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Abstract 

This project proposed to design, build and program an autonomous sailboat from 
an  existing RC sailboat kit; in order to achieve this with as few modifications as possible 
to the original platform, and make use of modular design techniques, the single-board 
computer controlling the boat will be able to can interface with any standard radio 
controlled vehicle, and give it autonomous navigation and telemetry capabilities. This 
Navigation and Communication Artificial Intelligence (NAVCOM AI) takes in data from a 
GPS set and augments it with other sensors (compass, altimeter, accelerometer etc.) to 
increase positioning precision; this data is used for waypoint-based navigation and/or 
telemetry. Application-specific sensors can override waypoint tracking to provide for 
obstacle avoidance; waypoint data can be updated on the fly via the telemetry 
transceiver, allowing for one AI-controlled vehicle to follow another (or track a homing 
beacon). A separate watchdog and switchover system allows the user to resume manual 
control transparently, keeping the AI as a telemetry system only.

Steering a sailboat is one of the most computationally intensive tasks in 
navigation: to this day no autopilots are commercially available for sailboats. In addition 
to basic navigation, problems such as compensating for current drift, wind crosspush, 
and the “tactical” decision on when to tack and jibe depending on bearing to target and 
wind conditions had to be solved. After implementation, the AI-controlled boat is able to 
complete a GPS-defined circuit with a two-meter (6ft.) margin of error, and decide 
autonomously when to tack or when to use its auxiliary motor should she have to go 
against the wind to reach a waypoint. In addition, the NAVCOM AI computer provides 
telemetry data similar to those that would be available to the pilot of a real ship, to 
enhance performance when the boat is human-controlled
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I: Introduction
 

Every year, the world's registered merchant marine uses twice as much 
fossil fuel as every car, truck and train in the United States. It is estimated that 
between 25% and 50% of cargo ships at sea at any given moment aren't 
registered with any nationality; these are usually older vessels that undergo only 
sporadic maintenance and thus can be assumed to have even lower fuel 
efficiency.
 With the upward trend of oil prices, and basic security issues  preventing 
widespread adoption of nuclear-powered cargo ships a return to sails as a 
propulsion method for for sea transport -- at least partially -- is foreseeable in the 
next 10 to 20 years.
 The main expenses in operating a ship are fuel and crew; while a wind-
powered ship would save enormously on the former, it is a historical fact that a 
large part of the reason why sailing vessels were all but commercially abandoned 
in the late 1800s is that they require a large number of skilled professionals to be 
operated.
 An AI-driven sailboat could drastically cut down on the manpower required 
to run it. On a merchant marine ship, having an AI run the rigging would bring 
crew requirements down to current powered-vessel levels, while preserving the 
significant fuel savings from only requiring engine power when launching, 
docking or becalmed.
 A second application is found in research. Unmanned sailboats remain at 
sea for a long time, generate their own power via solar panels or wind 
generators, and not affect any data collection with  chemicals or noise produced 
by the engine.
 

 Mankind has been sailing for thousands of years. Sails probably rank just 
below the wheel in their contribution to shrinking distances. This is a powerful 
legacy to build on. A (mostly) automated cargo ship would be able to cruise at 
about half the speed as a current cargo ship, at maybe 25% of the cost or less. 
This makes AI sailing an excellent fit for goods that are generally sold in bulk 
(and thus traded as options) and have a long shelf life, including grains, canned 
food, and most raw materials that do not require refrigeration or special handling.
 

I have designed and implemented an autonomous sailboat prototype as a 
means to determine what sort of sensors and processing power is required to 
effectively and safely operate such a device. The boat will carries separate logic 
systems, which are able to communicate or function independently of each other: 
the goal of this project is to prototype an AI-controlled sailboat that can function 
on its own power and intelligence until multiple malfunctions occur. The 
mechanical platform used in this project is a 1-meter remote controlled sailboat 
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whose remote control will be kept installed alongside the AI to allow manual 
override; from a nautical standpoint, the boat is classified as a single mast, single 
hull yawl with boomed jib; it will be supported by the following subsystems.

The NAVCOM AI will be designed from the start to be modular, its 
components able to be fit into other vehicle platforms; other subsystems are 
specific to ELAINE as a sailing vessel. A number of subsystems are planned:

Power Plant -- Wind-powered, with internal battery to run the electronics. 
Electric motor provides auxiliary propulsion. In a production model, the motor 
could act as a generator – larger vessels may also carry solar panels.

Obstacle Avoidance -- Single bow-mounted ultrasonic range sensor to 
detect obstacles (radar and underwater sonar could be mounted on larger 
vehicles).

Wind Direction -- Hall-sensor based weather vane mounted topmast, gives 
relative wind direction. Knowing the wind direction allows the boat to angle its 
sails optimally.

GPS - Gives current position and velocity, and tracks waypoints. The GPS 
communicates with other electronics via a serial cable using the NMEA standard.

Accelerometer – Returns current pitch and roll of the vessel, allowing it to 
detect dangerous weather conditions.

Radio Modem – Waypoint coordinates and other commands are broadcast 
to the AI through the radio modem. A route system determines if a particular 
waypoint is a final destination or an intermediate destination. The radio modem 
can also be used to directly control the boat if required. The modem can 
communicate back to a PC current status, distance to waypoint, AI state and 
other telemetry information.

Auxiliary Motor -- A small electric motor is mounted over the rudder, to use 
during approach/docking and when wind speed is insufficient to guarantee 
motion. 

Solar Panels – The original intent was to have solar panels power some or 
all of the boat's systems. Due to weight and cost considerations, this has proven 
unpractical – however, a larger boat could easily support this.

Voltage Sensor -- A simple low-battery indicator alerts the processor, 
which can then decide to underclock itself to save power and use the high-drain 
components more sparingly.
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Rudder Servo -- Used to steer the boat.

Sail Servo -- Heavy duty large servo used to angle the sail; one servo 
handles both sails through a simple pulley system.

Computation -- Microcontrollers will be used to run the boat, one to 
preside over each sensor , and one to coordinate. These will be able to clock 
themselves up or down (up to a max. 8Mhz) depending on the power situation. A 
prolonged zero-velocity situation will allow use of the aux motor and disable the 
tacking AI until wind conditions change; a scripting language allows behavior 
updates over the RF link. If a sensor malfunctions, the associated processor will 
report the condition and shut itself off; the CPU will try to reactivate downed 
subsystems at appropriate intervals.

Interface -- A laptop will be used to remotely monitor the boat. GPS 
coordinates for waypoints will be transmitted by the modem which will also be 
used for manual commands. The interface is ASCII-based to allow use on 
standard serial terminals, but an enhanced graphical interface is provided.

Payload -- No active payload is planned at this stage; however, data 
logging to record prevailing wind direction and mark the location of discovered 
obstacles is possible with the specified sensors. A trailed sensor pod containing 
temperature or water pH sensors is possible as a future development.

The boat will be able to follow a route using GPS. If the boat is required to 
go against the wind, it will plot a course allowing it to tack against it, and will try to 
optimize the tacking angle for shortest travel time (which does not equal shortest 
travel distance). In addition, the boat will modify this calculated course to quickly 
veer away should it find an unexpected obstacle.
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II: Software – NAVCOM AI

In order to perform any navigation operation, the speed, altitude, and 
relative location and direction from the plane to the target must be known.  The 
“backbone” of the Navigation and Communication Artificial Intelligence system 
(NAVCOM AI) interprets and interpolates GPS and sensor data to provide and 
transmit digital navigation information. The application-specific AI rides on top of 
this system and uses its data to perform navigation tasks.

The NAVCOM AI backbone is a simple real-time operating system that 
runs on the Parallax Propeller 8-core microcontroller: it not only provides 
applications with a constantly updating memory map containing position and 
navigation data, but also present an API (Application Programming Interface) for 
the navigation application to control servos, send data to a base station, and 
even change interpolation parameters on the fly; simple applications can put in 
expression form and loaded wirelessly, while more complex applications such as 
the tacking AI used on ELAINE or the drop-distance prediction used on the 
Ithuriel aircraft must be loaded at compile-time as a subprogram within the OS. 

 The Parallax Propeller is the first in what will probably be a long line of 
multi-core microcontrollers.  It has 8 separate processors, or cogs, that can run 
function independently or in conjunction; the NAVCOM AI OS takes full 
advantage of this by allocating cogs dynamically. 

Figure X: Interaction of eight cogs with the hub, or timing synchronizer of 
the Parallax Propeller.

On average, four or five cogs are used by the OS and one by whatever 
application is being run at the moment; the other two or three can be configured 
as FPUs by loading high-speed math routines into them. All non-FPU cogs 
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produce and consume information stored in a memory map consisting of a 
number of 32-bit memory locations mapped as IEEE-784 floating point numbers. 
Cog 0 always runs the main program, which in turn ‘assigns’ the next operation 
to the next idle cog on a first-come, first-serve basis. It is possible for an 
application to either “reserve” one FPU cog or prevent the running application 
from using any in case the application developer feels that deterministic timing 
for math operations is important (using the default behavior, the application can 
queue itself for a FPU and will be served depending on availability).

The NAVCOM AI OS is logically structured into subroutines, most of which 
present an API to the application; some of these always run on their own cog 
(generally to allow for parallel processing), while others are run by the calling 
cog. The math subroutines are a special case that will be discussed later.

NAVCOM AI’s subprograms that are called dynamically by the main 
program (and often also by each other)

 NAVCOM AI Processes
0 Main/Scheduler
1 Memory map
2 Stack Length Debugger
3* Servo Driver
4 Simple Serial Port Driver 
5* Full Duplex Serial Port Driver 
6* GPS Parser and Interpolator
7* Sensor Parser
8** Math (Basic)
9** Math (Trig/Nav)
10 Expression Parser 
11 Sync Timer
12 Printing Functions (Console)
13 Command interpreter
14 Route Handler
15* TV Signal Driver

16 
onward

AI Applications

**: May run in own cog
*: Must run in own cog

In terms of reliability, the dynamic allocation of cogs allows the program to 
continue functioning, albeit slower, if one or two cogs malfunction as long as cog 
0 keeps working (the scheduler runs on Cog 0; some tasks generate a 
“heartbeat” value that the scheduler can check against in order to restart a stalled 
process).  For example, if one cog malfunctions, NAVCOM AI would move its 
dedicated floating-point processing to only one cog – this forces more processes 
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to do their own math without using a FPU, and can cause synchronization errors 
if the interpolation rate is not reduced (the scheduler detects sync errors, and 
progressively reduces the interpolation rate). This causes the NAVCOM AI to 
trade off precision for accuracy, but allows it to keep functioning. Should another 
cog present problems, the analog TV output can be forced to turn off in order to 
maintain navigation functionality.

The combination of dynamic processor allocation and a static memory 
map may seem awkward, but goes well with the Parallax Propeller's architecture: 
the memory map is mapped as code memory and can be accessed very quickly 
by all processes near-simultaneously, while the Hub hardware ensures that race 
conditions are not possible.  For contrast, in a normal cluster of personal 
computers the local memory is much faster than the shared memory, so the 
unified memory map advantage would not apply – in this case, local memory is 
limited to each cog's registers. 

The Propeller can be coded for using either assembly language or the 
higher level Spin, which was designed specifically for the Propeller’s 
multiprocessor capabilities.  Spin is an interpreted, weakly-typed language whose 
syntax is derived from C and Python. Assembly is used for most high-speed 
tasks such as full duplex serial communication, advanced math and DSP; 
applications for the NAVCOM AI OS must be written in Spin in order to preserve 
modularity. 

An outline of each process follows below:

Main Program (Scheduler)
The main program delegates the tasks that each cog should do, when 

they should do them, and makes ‘sense’ of all the data; it also initializes other 
processes, and monitors them to make sure they haven't hung.  Its first task is to 
initialize the other processes for the first time – this is done by calling the 
command interpreter with fixed arguments.

As is common for microcontrollers, the main program takes the form of a 
loop. In pseudocode, the loop first checks whether the GPS interpolator has 
produced new information; if this is the case, the physical situation has changed 
and must be dealt with: the main AI function is called – borrowing from game 
development terminology, the AI has executed a physics “frame”. Otherwise, 
there is no detected physical change, and the scheduler can call lower-priority 
functions. If the “transmit telemetry data” flag is raised, the telemetry function is 
called – this generally happens a set number of times per second on a frame 
immediately following a physics frame, in order to assure that the data are fresh; 
this is called a transmit frame. If no telemetry is required, the AI alternates 
between updating one line of text in the TV display (if present) in a display frame, 
and consuming the radio modem's serial buffer in a receive frame. Thus the AI 
loop might go through a progression of states such as 
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......P TRDRDR P DRDRDR P DRDRDR P TRDRDR......

depending on interpolator and telemetry frequency. Regardless of frame type, 
the scheduler then checks for “heartbeat” values from the GPS interpolator and 
sensor parsers and restarts one or both in case of lockup (if the GPS interpolator 
locks up, the interpolation frequency is also  automatically reduced); finally, 
before looping over the scheduler checks the control state (whether the AI is in 
control of the vehicle, or RC input is overriding it) and informs the user of it and 
GPS signal quality should they have changed from the previous frame.

A known problem in NAVCOM AI 1.1 is that a receive frame can take a 
potentially large amount of time if during it a command is received fully, because 
it must be processed – the command interpreter is called with the contents of the 
serial RX buffer string as an argument; in that case, all frames up until the next 
physics frame are preempted. 

Subprograms:

Main AI function
The main AI function updates the derived values in the main memory map 

and does basic navigation calculations such as determining distance and turn 
radius to the next waypoint; should a waypoint have been reached, the function 
calls the route handler to determine what the next waypoint in the route is.
The main AI function then  runs the expressions for each servo, and then calls for 
a custom AI application (which can override expressions or routes, if necessary) 
– note that for basic waypoint-to-waypoint navigation, all tasks can be handled 
purely by expressions. The main AI function then uses the OS timer to determine 
whether telemetry should be transmitted during the next frame; Finally, it updates 
the servo values, which will be consumed by the servo driver on its next iteration. 

Custom AI Applications
As of the current iteration of the NAVCOM AI OS (1.1), the source code 

file for the scheduler also contains other code, most notably the code for AI 
application; this is currently in the interest of expediency, but to promote 
portability this will probably change in the next release. There are up to 64 of 
these separate functions available, but only seven are currently being used (0-6). 

Table X: Vehicle Specific Functions in the Main Program as of version 1.1
0 None
1 Sailboat
2 Powerboat
3 Plane Drop
4 Car
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5 Plane Initialization
6 Plane Drop Simulation

The default ‘ai’ value is zero; this can be used for basic navigation by 
associating servo outputs with expressions through the radio modem, or can be 
configured just for telemetry; in this case, no application is called.

Each application can be thought of as its own program, called by the main 
loop; by coding a finite state algorithm (using the global variable AIState) it's 
possible for an application to make use of past information while making a 
navigation decision. Most NAVCOM AI functions are accessible to the application 
– it is possible for the application to change the interpolation rate, or force a 
sensor reset, or even shut down the entire AI (say, once a mission is complete). 
Given the way applications are  called (an application step runs immediately after 
a physical-state-change step), anyone who is familiar with Moore FSA's can 
quickly and elegantly code an AI application.

1) Memory Map
In order to access universal variables in the multiple dynamically allocated 

cogs, a memory map in the form of a library was set up.  It contains 81 four-byte 
variables that can all be accessed by their address.  The pointers are set up as 
constants spaced four numbers apart, and are manipulated as follows:

long[@SensorData + SDAO + GPSTracking]

The variable type in this example is ‘long’, which is a 32-bit floating-point 
number in IEEE-754 format; Almost all the variables in NAVCOM AI are floating-
point longs, except for global flag values. The ‘@’ indicates a pointer, and 
SensorData is the starting address of the memory map. SDAO is an offset 
indicating where the memory map is within the entire memory.  This constant is 
what enables the memory allocated statically so that each dynamic processor 
always knows where everything is stored.  GPSTracking is equated as a 
constant to 164.  The next variable, lat_delta, is equated with 168, and so on. 
The variable GPStracking is therefore stored in the memory location which is 
defined by the sum of the pointer, the offset, and 164.

Since the map is a considered a library, each subprogram only needs to 
initialize a constant pointer for the starting address in order to access all the 
variables in the library.  

2) Stack Length Debugger
This is a simple subprogram that ensures that the length of the stack does 

not exceed the limits set for it in the library: process stacks are initialized with 
pseudorandom numbers whose seed is preserved, thus allowing this process to 
monitor the maximum stack usage of other processes. Currently the stack length 
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debugger is mainly used as a  tool to determine stack requirements, and is only 
called during certain display frames; in the next iteration, it will either be removed 
entirely as stack sizes are finalized, or be run by the scheduler during non-
physics frames and be made able to detect a stack overflow and force a 
reinitialization of the offending process. The debugger's code was derived from 
Parallax's original debugger, but has been integrated into the NAVCOM AI API 
and greatly reduced in size while retaining its functionality. 

3) Servo Driver
Servos operate on varying pulse widths, usually between 1000ms to 2000 

ms for analog servos and 750ms to 2250ms for digital servos.  Parallax wrote an 
assembly Pulse Generator to produce pulse widths by dedicating a cog to it. The 
NAVCOM AI OS uses this code as a base, but expands upon in by adding sanity 
checks (timing limits for the range of pulse widths used by servos) needed for 
this specific application.  The limits prevent mechanical interference and loading 
if there is something physically in the way of the servo moving its full range; while 
the driver is able to generate 32 pulse trains, only 4 are currently used. 

The NAVCOM AI OS standardizes on 32-bit floating point, and represents 
servo positions with values from -1.0 to 1.0 – the actual centering and servo 
swings are defined as constants and can be changed to accommodate different 
servo manufacturers. For example, setting Servo1 to 0 with default settings will 
cause the Servo1 pin to output a 1.5 millisecond pulse. While this conversion 
introduces a small delay, it allows application developers to have a consistent 
frame of reference that can be worked with reliably once the mechanical part of 
the design has been finalized.

4) Simple Serial Port Driver
This driver allows a cog to read serial data from a pin without assistance 

from another cog; it is an improvement upon the SSPD written by Parallax in that 
it allows setting a timeout value and will therefore not halt processing if, for 
example, nothing is connected to the serial port's RX pin. This is used for all 
sensor input pins, and for the GPS input pin should a dedicated cog not be 
available; in NAVCOM AI 1.1 the transmit function has been commented out to 
save space.

An issue with this driver is that since the SSPD cannot assume that one of 
the hardware timers is available, a software timer is used for the timeout feature 
– this restricts said features to baud rates of 9600 or below. Since both sensors 
and GPS transmit at this speed or below (NMEA standard specifies 4800 baud), 
this is not a high-priority issue.

5) Full Duplex Serial Port Driver
The FDSPD dedicates a cog to “ping-pong” serial transmitting and 

receiving which provides effective full duplex at speeds up to 1Mbps; this driver, 
written by Parallax, was modified to allow variable-length transmit or receive 
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buffers, and burst mode transmission by writing to the transmit buffer directly 
thus allowing the process communicating with the FDSPD to do so quickly.   

Currently, a 64 bit receive buffer and a 128 bit transmit buffer are used – 
64 bits being the maximum length of NMEA strings used by the NAVCOM AI, 
and 128 bit being the maximum size of a response packet from the AI to the base 
station. This driver is used for the radio modem in receiving commands and 
transmitting telemetry and responses, and for the GPS when available in order to 
improve reliability.

6) GPS Parser and Interpolator
The NAVCOM AI OS treats GPS parsing and interpolating as a single 

process for efficiency reasons: both activities are strictly necessary for 
navigation, both are mutually exclusive, and receiving GPS data takes a few 
milliseconds and occurs once per second; therefore the same cog is tasked with 
both operations, preventing unnecessary and time-consuming process switching 
(This is a violation in spirit of the NAVCOM AI's modularity, but was kept for its 
efficiency). 

All known implementations of the NAVCOM AI currently use the Garmin 
Etrex GPS receiver, but any receiver that has a serial ASCII text output at up to 
9600 baud could be used; formats supported are NMEA, GAMA and Garmin 
TXT, at 1Hz or 0.5Hz (the process needs at least two consecutive transmissions 
from a GPS upon startup in order to determine which format is used, and how 
often transmissions are made by the GPS unit); eventual irregularities in the 
transmission frequency are dealt with by using a separate cog to run the serial 
port, and having the parser/interpolator read from its buffer; in order to free a cog 
for other uses, the serial port driver is shut down as soon as the GPS sends a 
termination character.

Whatever the source, the process distributes GPS data into the global 
memory map, performing the eventual necessary calculations to derive whatever 
information the GPS is not providing in direct form (for example, some 
acceptable NMEA sentences provide heading, while the Garmin TXT format only 
gives velocity vectors that must be converted to polar form). 

Once this is done, the interpolator is activated and set to run a specified 
number of times a second: values in the memory map are updated using linear 
interpolation, corrected using sensor input that the sensor parser has stored into 
the memory map (the process is asynchronous to enable the system to use the 
latest available data); thus, this interpolated position  is obtained by dead 
reckoning if no other sensors are available, but makes use of bearing sensors 
(compasses or gyros) and speed sensors (tachometers, PSID instruments, 
accelerometers or solcometers) if they are available – a NAVCOM AI that has at 
least one speed and bearing sensor connected can know where it is with a 
theoretical maximum precision of 8 inches between GPS transmissions. 

At the end of every interpolation step, the previous results are saved in a 
secondary memory map along with the difference between the new results and 
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them – this memory map is accessible to application  developers who may have 
a use for the first derivatives of navigation parameters in their applications.

Two thirds through the interpolation process, the serial port driver is 
reactivated (the 0.33 second buffer time was added after noticing that some low-
end GPS receivers were fairly imprecise with the frequency they sent information 
at). The interpolation process then resumes.

At the end of the interpolation process, control is returned to the GPS 
parser subroutine and the loop goes on. In case of GPS failure, or the GPS 
reporting invalid satellite data, the GPS parser (after notifying the main function) 
tries to interpolate its position based on the available data by having the 
interpolator perform one extra iteration; as explained with the interpolator, 
depending on what sensors are available the precision of this fail over system 
may be enough to allow GPS-less navigation for extended periods of time.

7) Sensor Parser
The sensor parser works in a similar way to the GPS parser, with the main 

difference that it handles up to five sensors and only accepts NMEA-like or tab-
return format entries; in a departure from NMEA standards, the parser assumes 
that sensors produce data continuously (a NMEA instrument will still work 
connected to the sensor parser, but may stall it for some time). A serial string for 
a sensor is read, processed, and the process is repeated in a loop with other 
sensors – the NAVCOM AI motherboard contains a battery sensor and 
connectors for four more.

Between sensors readings, the presence of a radio signal from a RC 
transmitter (from a pulse detector, also pre-built into the motherboard) is also 
checked for and notified to the main program. Sensors can be built in any way 
consistent with the format expected by the parser: 

$Pt,<x>,1234,<y>,1234.5,<z>,123[*]<fffff>[cr][lf]

The ‘$P’ is a symbols that indicates this is a proprietary sentence in NMEA 
format (that is, not a standard NMEA sentence). The t letter indicates the sensor 
type; an uppercase letter indicates that the microcontroller running the sensor 
has already performed some processing, while a lowercase letter indicates raw 
values. Sensor types can be B/b for battery level, C/c for compass, S/s for speed 
and so on; an application developer can easily add their own sensor types by 
using the ParseNextInt and ParseNextFloat API functions and copying the logic 
of an existing sensor type parser. 

The letter also serves as  a priority indicator to follow for the next iteration; 
for example, a battery-level sensor can be considered lower priority than an 
altitude sensor for an airplane, and may be skipped during the next few loops to 
save time. All priorities are relative to those of the other sensors; if only a battery 
sensor is connected, it will be checked as often as possible regardless of its base 
priority. The priority system is handled by a 9-bit counter that increments each 
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sensor parser loop; sensor types are given a power-of-two priority that is 
compared bitwise with the counter value to determine whether to go through with 
the parsing or not. The counter value is also communicated to the scheduler, 
doubling as a heartbeat signal from the sensor parser process – a stalled value 
will cause the scheduler to reinitialize the sensor parser.

Continuing on the parsing, the x,y,z letters represent identifiers for the 
following numerical values; they are occasionally used in NMEA sentences, but 
not used and ignored. Numerical values are processed in the order in which they 
appear, and used appropriately depending on sensor type – for example, a c-
type sensor (raw compass data) is assumed to be built from two perpendicular 
Hall effect magnetometers, and the two incoming numerical values are treated as 
magnetic field intensity for the x and y axis respectively.

The characters *, carriage-return and line-feed are all treated as valid 
terminators for that string; upon receiving a terminator, the sensor parser moves 
to interpret the received data. The NMEA format allows for a checksum between 
the * and the newline; currently this is also ignored, but this may change in the 
next revision.

Heading and speed sensors are parsed differentially – the change 
between the current and last value is recorded, and added or subtracted from the 
GPS-derived data. This has the useful effect of simplifying interpolation 
operations, and allowing a compass sensor to be installed in any orientation and 
still be able to give correct heading once at least one GPS packet is received. 
Once values have been received, they are stored in the global memory map to 
be consumed by the GPS interpolator or the main function.

Sensors can be connected and disconnected on the fly; by directly reading 
the existence of a voltage on the sensor receive pins, the parser is aware of the 
change almost instantly (should a sensor be disconnected mid-transmission, its 
last transmission is discarded). If no voltage change is detected between checks, 
the pin is assumed to either not have a sensor or have a sensor configured at an 
incorrect baud rate, and skipped for that iteration of the loop – this prevents 
hangups should a sensor cease to function. 

It is possible to have multiple sensors of one type to ensure redundancy, 
as long as they are scaled in the same way – this was deemed to not be an issue 
because it's safe to assume that redundant sensors would be configured as to 
give identical data during normal operation. 

8-9) Dynamic Math Library (Basic and Trig)
All floating point mathematical operations in NAVCOM AI are performed 

by this process.  Since it is a collection of functions to be called, equations 
cannot be written in the typical way, i.e 

x:=3+4
 The math library must be called in the following manner

x:=m.fadd(3.0,4.0)
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using prefix notation because the Spin language does not allow the overloading 
of operators.

In this example, the dynamic library is assumed to have a public function 
within it called ‘fadd’ (for floating point add). In most cases, this is all that the 
calling function needs to know; the math library justifies its “dynamic” name by 
dynamically allocating zero, one or two cogs to processing the operation.

During normal operation, the math library asks the Hub if there is an 
available cog; if there is, the FPU assembly routines are quickly loaded into it, the 
cog is started and given the relevant arguments (in this case the two addends), 
the result is read from the cog's memory and the cog is stopped. If there isn't a 
cog available, the “slow” correspondent for that function is called (in this case, 
m.fadd would redirect to m.slowfadd) and the calling processor be made to 
perform the operation while still running the Spin interpreter. 

This is not the only possible case: Some operations such as Cartesian-to-
polar coordinate transform use two cogs in parallel if available (one for 
magnitude and one for direction); some operations such as truncate or int-to-float 
do not take advantage of the FPU at all because, due to their simplicity, it would 
take about as long to start and stop a cog than to have the calling cog do the 
operation itself; finally, a few operations would take so long to evaluate in Spin 
that only an assembly version was coded – in that case, the calling cog is made 
to wait until a FPU cog is available (NAVCOM AI 1.1 only has this happen for the 
atan2 operation; this bottleneck will be removed in the next version by using a 
lookup table for it).

A drawback of the dynamic approach is that, depending on FPU 
availability, the timing for evaluating an operation becomes very nondeterministic: 
this is handled in two fashions. 

First, the “slow” version of a function is always made accessible through 
the API should an application developer decide to forgo speed for determinism. 
Second, four commands exist to temporarily disable dynamic allocation to either 
taking over a FPU cog permanently and keeping it idle when not called (m.lock, 
with m.unlock to release) or force using the slow functions (m.forceslow and 
m.allowfast to stop); the last two are different from simply calling the “slow” 
functions directly in that an application may be forced slow depending on 
program flow, thus allowing an application developer to have their AI application 
“relax” and allow itself to run slower when navigation is steady and quick 
response is not required. 

In in the next revision, these commands will be changed to m.fast, m.slow 
and m.auto by essentially combining the allowfast and unlock commands in order 
to further simplify the API.

To get past the local-memory bottleneck presented by running assembly 
functions in a cog and to allow a degree of parallel processing in navigation-
specific operations, there are two FPU configurations, one containing basic math 
functions and the other containing advanced trigonometric functions such as 
arcsine or arctangent2 (the add, negate, multiply and sine functions exist in both 
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configurations to reduce the need for switchovers); the second configuration is 
still being optimized, and is stored separately to allow for quick portability when 
optimizations do happen.

Currently, the math library supports these functions:

Math Library Operations
Function Argument

s
0 1 2

add 2 x x x
subtract 2 x x
multiply 2 x x x
divide 2 x x

square root 1 x x
int–>float 1 x

float–>int truncate 1 x
float–>int round 1 x

negate 1 x x x
abs value 1 x

log 1 x x
ln 1 x x

exponential 1 x x
sine(rad or deg) 1 x x x

cosine(rad or deg) 1 x x
tangent(rad or deg) 1 x x

arctangent 1 x
atan2 (math) 1 x

atan2 (nav) aka 2d heading 2 x
3d heading 3 x

Cartesian–>polar 2 x
math angle–>nav angle 1 x x
nav angle–>math angle 1 x x

compare–>int 3 x x
compare–>float 3 x x

2d distance 2 x x
3d distance 3 x x

(Note that polar–>Cartesian is not used often in practical navigation, and 
therefore has no prebuilt operation associated with it – however, it's possible to 

perform the operation by running a series of simpler operations)

10) Expression Parser
The NAVCOM AI can be programmed on the fly by the use of six 

alphanumerical expressions; one for each servo, one for tracking (determining 
where to go), and an extra equation that can be shown on the TV display or used 
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as variable for any of the others. This functionality requires an expression parser; 
in order to speed up processing, a RPN (reverse polish notation, or postfix) 
parser was used.

These expressions can be defined on the fly wirelessly, or within an AI 
application – particularly useful is the fact that if no AI function is used, use of 
expressions can still provide basic navigation. The expression parser takes RPN 
expressions made up of numbers (integer or floating point with the . character as 
the decimal point), lowercase and uppercase letters, and the following symbols:

Expression Parser Operations
Symbol Functionality Args

+ Addition 2
- Subtraction 2
_ Subtraction reverse 2
* Multiplication 2
/ Division 2
\ Division reverse 2
$ Square root (symmetric) 1
^ Power 2
& Choice 3
( Sine (degrees) 1
) Cosine (degrees) 1
[ Sine square wave 1
] Cosine square wave 1
~ Angle adjust 1
% Modulus 1
: Swap A and B 2
| Absolute value 1
! Negate 1
} Clamp/Dead zone 2
{ Standard steering function 4
> Greater than 2
< Less than 2

Equals (to nearest integer) 2

While most symbols are present in standard arithmetic, others require an 
explanation:

The $ symbol is used for symmetric square root, which can be expressed 
as the square root of the absolute value of a number, multiplied by the sign of 
that number – thus $(9) equals 3, and $(-9) equals -3. When graphed, this 
generates a curve that is symmetric about the origin (hence the name) – this is 
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used to both provide an uninterrupted curve, and to avoid unpredictable results 
should a negative value be used as an argument.

The _ and \ symbols are used to help developers and users get used to 
the RPN notation. On occasion, the inexperienced user will make an ordering 
mistake with non-symmetric operations and only notice after entering the two 
operands; these two extra operations allow for quickly correcting the error. On 
the other hand, developers may find these useful when testing an expression to 
later rewrite in prefix notation for use in Spin – when these two symbols are used 
rather than – and /, all one has to do to go from postfix to prefix is rewrite every 
operand and operation right to left. Prefix notation was considered for the 
expression parser, but postfix won out for ease of numerical comparison with 
commercially available HP calculators that use postfix.

The % symbol is a simple IF...THEN implementation equivalent to the if() 
function used in many Computer Algebra Systems packages: the syntax is “if 
condition > 0, return value1, else return value2); in RPN notation, this becomes C 
V1 V2 & and can be used to make simple decisions.

The ~ symbol adjusts a basic operation to work with angular values (in 
degrees), returning an angle between +180 and -179.999...; for example, a 
heading of -45 means north-west and a heading of 180 means south. This is 
particularly useful when converting from absolute angles (heading, bearing) to 
relative angles (turn amount, wind direction) or vice versa.

The : symbol swaps the values of the last two numbers or variables 
encountered in the expression and mostly exists for compatibility with RPN 
calculators that feature the “Swap x-y” key (incidentally, the NAVCOM AI can 
perfectly emulate a HP-35 hand held calculator); thus, A B - : is equivalent to A B 
_ and vice versa.

The sine and cosine operators ( and ) -- which must not be mistaken for 
parentheses as postfix notation doesn't use them – return the sine or cosine of a 
value; as with everything in navigation, this value is expressed in degrees. For 
example, 90 ( would return 1. The square wave equivalents [ and ] perform the 
same function, but also promote the result to 1 if it is higher than 0, and to -1 if it 
is lower, thus generating a square wave corresponding to the sine/cosine wave. 
This is primarily used in conjunction with the operation timer to generate an 
alternating motion for a servo.

The >, < and = symbols return 1 if the condition they specify is true and 0 
if false; as a note, the = symbol works to the nearest integer due to the possibility 
of rounding errors in floating-point math not tagging as equal values that are 
intended to be.

The } symbol is used for a “clamp” operation meant for use with 
rudder/steering servos: its syntax is V C } which returns V if V is greater than C or 
lesser than -C, and zero otherwise – this creates a “dead zone” around zero, and 
can be used to prevent rudders from making many power-consuming minute 
adjustments that have no practical effect on navigation.
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Finally, the { symbol is a shortcut for a very versatile function that finds use 
in rudders and throttles, defined in standard notation as {(x) = ax^2 + bx + c$x 
where $ is the symmetric square root described above. This function can 
associate a value to another in a very flexible manner by simply altering the a, b 
and c coefficients accordingly, and is useful for testing and debugging.

The next revision of the NAVCOM AI function will incorporate a 
“hysteresis” function with a change window; this should prove useful as an 
extension of the clamp function for uses other than steering.

The operations listed above can take variables in addition to numeric 
values: variables have one-letter names and go from A to Z. At startup, the 
NAVCOM AI OS maps these values to a default memory map position (for 
example, A is altitude, B is battery as a ratio of low battery, C is compass and so 
on); these mappings can be redefined by the user or by the AI application. Using 
the default mapping, assigning to a servo the expression U 180 / would cause it 
to move linearly according to the calculated turn amount, with a full swing in 
either direction should a 180 degree turn be needed and a center position should 
the AI-controlled vehicle be on course – a good starting point for a rudder 
mechanism.

Lowercase letters give the change in that particular value from the last 
GPS interpolation to the current one; for example, using the default mapping and 
interpolating ten times per second, an a value of -0.1 would mean that during the 
last second the vehicle's altitude has decreased by one meter. With this format, 
the first derivative of any navigation parameter can be obtained by dividing the 
delta of that parameter by the delta of the operation timer (o when the standard 
mapping is used); thus, the expression s o / (again with standard mapping, s 
meaning speed) can be used to return acceleration in case an accelerometer 
sensor is not present. More details on the use of the expression parser can be 
found in the AI command manual.

From a technical standpoint, the expression parser is divided into a 
tokenizer and a solver: the tokenizer takes an ASCII string containing an 
expression, and generates two stacks from it – one containing the operations and 
operands, with the # character representing a numeric value, and the other 
containing the numeric values themselves as 32-bit floating point numbers. The 
tokenizer also performs basic “sanity checks” such as padding the value list with 
zeros or floating-point ones should an expression be malformed or written in a 
way that might overflow the RPN stack.

The solver is a standard stack-based implementation of a RPN calculator; 
the main highlight is if it encounters a “variable” token, it will retrieve the 
appropriate numerical value from either the main memory map or the secondary 
memory map that contains the deltas before continuing.

While this division between two is somewhat inefficient in terms of 
memory, it allows the time-consuming tokenization and error-checking to be 
executed only when the expression changes because of user or application 
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input; since the basic six expressions have to be evaluated during every physics 
frame, this method allows for only the solver to be called, thus allowing a 
significant decrease in execution time.

11) Dynamic Timer
The dynamic timer provides a way for different processes to use the 

system-wide (Hub-based) free-running timer to be used for wait functions – this is 
primarily used by the GPS interpolator when determining how long to wait until 
the next interpolation step once all the calculations have been made. The 
dynamic timer function contains a table of often-used time intervals as functions 
of system wide timer intervals (the Propeller operates at 80Mhz, but the numbers 
had to be fudged somewhat to allow delays caused by function calling, Hub 
availability and so on).

12) Printing Functions
The printing functions are used to output values in human- or machine-

readable format as required. Most of these have been derived from those 
provided in Parallax's API, with minor rewrites to privilege speed at the cost of 
code size and to use the dynamic math library where appropriate; these functions 
return a pointer to a string that can then be output either from the radio modem or 
the TV by using their respective string output functions; the “plus” and “minus” 
characters can be specified separately to facilitate use in navigation (for 
example, when printing coordinates, north and east are plus while south and 
west are minus). 

The functions to convert an ASCII floating point or integer values also 
reside here – a peculiarity is that these return not only the desired value, but (via 
a by-address parameter) the number of characters that the converted number 
used up. This is particularly useful when extracting values from NMEA and 
NMEA-like strings: when this parameter is fed the initial address for the string, it 
will return the address at which to start looking for the next numerical value; 
multiple instances of this can easily be put into a for loop allowing for fast and 
readable NMEA or tab-return parsing code.

The conversion function into the 5-byte binary telemetry format is also 
counted as a printing function; since this is not a standard format, it requires a full 
explanation. A common problem with sending binary data serially is that it's 
possible for values to be misinterpreted as control characters (a cluster of zero 
bytes being the most prominent or common case); various methods are used to 
prevent this, from forcing repeat of control characters to using fixed-width binary 
strings.

My solution consists in treating transmitted serial bytes as ASCII 
characters if their MSB is low (the NAVCOM AI uses standard ASCII characters 
only, so this is absolutely not a loss) and as binary values if the MSB is high. 
Since the Parallax Propeller is a 32-bit machine and since we use a floating point 
format that also conveniently fits in 32 bits, the most common binary byte 
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combinations will be multiples of four; the MSB's of each of the four bytes are 
saved as bits 0 through 3 of a fifth byte, then set to 1. Bit 4 of the extra byte is set 
if the original value was a floating point number, and cleared if it was an integer 
number (there being no way to tell a 4-byte float from a 4-byte int by looking at 
the value itself); bytes 5 and 6 of the extra byte are used for a simple checksum 
by summing the values of the four original bytes and taking the modulus-4 value; 
finally, the MSB of the fifth byte is set to 1 to mark it as belonging to a binary 
packet. The five bytes are then queued for sending through the serial modem 
normally through the string-output function (it is possible to display them on the 
TV terminal, although it is rather pointless to do so), or stored.

76543210 76543210 76543210 76543210 becomes
T6543210 T6543210 T6543210 T6543210 TccF7777

 where T is true, c is checksum and F is float status.

With the reverse process, the NAVCOM AI Console (or any other base-
station application that may be written) can reliably reconstruct binary data when 
it appears in a telemetry string; since the encoding is extremely simple, binary 
values can even be decoded by hand during debugging. 

13) Command Interpreter
The command interpreter can be called by any function with a fixed 

argument (most notably, it is used by the scheduler to initialize or reinitialize 
processes) or by the scheduler when a full command is received from the radio 
modem. For a full reference of commands, a command list is available.

14) Route handler
The route handler is called whenever the distance between the AI-

controlled vehicle and its currently selected waypoint is less than the specified 
arrival distance. A route is specified by indicating a starting waypoint and an 
ending waypoint – the route becomes enabled (if it's tagged as active) once one 
of the waypoints in it is selected as the waypoint to reach. The route handler 
simply changes the waypoint to the next one in the route, skipping eventual 
invalid waypoints and turning the route off once the last waypoint is reached; this 
simple subroutine emulates a functionality found in many GPS sets. An AI 
application can override the router handler entirely.

As of the current revision, the NAVCOM AI OS only supports one route 
because none of the developed applications require more than one, although 
adding more is fairly trivial.

15) TV Signal Driver
The TV driver uses a signal generator written by Parallax in assembly; this 

routine is given a byte array representing a 40x14 ASCII display, and generates 
the appropriate composite signal to display it as white text on a black or blue 
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screen. The string-out function associated with the TV terminal simply “prints” to 
this array using the functions described previously to handle numeric values. The 
TV driver has been slightly modified to generate a signal that is either baseband 
(composite output on a RCA plug) or modulated (60Mhz, broadcast channel 3) 
thus allowing connections of an amplifier to the NAVCOM AI computer's TV-out 
pin for broadcast use; the TV output is mostly useful for debugging and for using 
the NAVCOM AI as a navigation aid in a human-piloted vehicle, and is generally 
kept turned off during autonomous navigation.

A version of the NAVCOM AI OS that has no TV out capabilities is 
available if the application developer requires more main memory and an extra 
cog to be accessible.

A future revision of the NAVCOM AI OS may add genlock capabilities to 
the TV signal generator, allowing the text to be superimposed to the output from 
a vehicle-mounted camera; however, this is not planned for the next revision.

16 onward) Applications
An AI application is a program riding on top of the OS that controls a 

specific vehicle or platform, using the OS-provided API for data acquisition and 
servo movement; specific AI applications have been developed for sailboats and 
airplanes. More information is provided in the section detailing the ELAINE 
application.
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III: Command List / Programming Guide
Syntax:
All commands must start with the @ key: since this requires pressing a 

shift key and a key far away from it, this should decrease the risk of accidental 
keystrokes.

Maximum command length is 64 characters.

All commands are terminated by either the return key or the semicolon key 
(for concatenated commands)

Generally, if there is no space between command and argument, 
adjacency is necessary; if there is a space, any number of spaces may exist.

A - or + character can be put immediately in front of a number (no spaces) 
to specify its sign; default is +.

A number that is outside the specified range for that parameter will be 
replaced by either the minimum or maximum value allowed.

All commands have a timing estimate indicated; the value shows for how 
long the AI will process the command (and not be able to send telemetry or 
update servo positions); “near-instantaneous” means that no telemetry or physics 
frames will be skipped.

Notation for commands is:

Bold - Type exactly as written.
i[min...max] denotes an integer value.
f[min...max] denotes a floating-point value; the decimal point is represented by 
the . character. Floating point notation for values that do not have a decimal point 
is not necessary (1 means the same as 1.0)

Navigation Commands

@!
"Man overboard" command. This goes to the next free waypoint, and 

saves the current coordinates to it, then sets said waypoint as the destination. 
This pauses overrides any routes; the route must be resumed manually. All 
nautical GPS consoles have this feature somewhere, for safety reasons -- this is 
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also why it's designed to be easy to type in quickly. The operation is near-
instantaneous.

@WP i[1...50]
Selects waypoint 1-50. If the waypoint was empty (e.g. it did not already point to 
a set of coordinates), the current coordinates will be stored as that waypoint's 
coordinates, such will be stored; also, if the AI is inactive (RC mode) the 
coordinates will be stored as well. Either way, the AI will try to steer towards the 
selected waypoint. The operation is near-instantaneous.

@WS i[1...50]
As above, but always set coordinates regardless of control situation. The 
operation is near-instantaneous.

@WC i[coord lat] i[coord lon]
Assigns specified coordinates to the currently selected waypoint, overriding any 
preexisting coordinates; the coordinates are entered in 1/10000th of an arc minute 
[Next revision will accept degrees and minutes, or deg/min/sec]. If only one 
coordinate is entered, the entire command is discarded. The operation is near-
instantaneous.

@WD
Displays the current coordinates in 1/10000th of an arc minute in the form of a 
@WC command that should be entered into the NAVCOM AI as a command in 
order to save the waypoint; most terminals allow for copying and pasting of the 
@WD command's output in order to use it as a command in itself later on.

@RS i[1...50]
Sets waypoint 1-50 as the route start. The operation is near-instantaneous.

@RE i[1...50]
Sets waypoint 1-50 as the route end. The operation is near-instantaneous.

@RB
Begins route traversal; once on a route, the AI will traverse it (incrementing the 
waypoint number for the route start is less than that for the route end, 
decrementing otherwise) and change waypoints once ArrivalDistance is reached. 
If the end waypoint number is lower than the start waypoint number, the route will 
be traversed backwards. This command must be used after a @! command is 
entered in order to resume the route. The operation is near-instantaneous.

@RC
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Cancels route traversal and clears the route (waypoint coordinates are not 
cleared). The operation is near-instantaneous.

@RD i[1.0 ... 999.0]
Sets the arrival distance from waypoint, in meters, at which the waypoint is 
considered "touched"; touching a waypoint allows the route pointer to advance. 
Default is 10 meters. The operation is near-instantaneous.

AI-specific Commands

@AIi[0...255]

Specifies which AI application function to execute each time step:
0 - None
1 - Sailboat
2 - Power boat
3 - Airplane
4 - Car
5 - Airplane 2
6 - Airplane simulation
5...255 Generic, with the number passed as a parameter.

This allows a single NAVCOM AI to be able to handle multiple vehicle 
types without needing reprogramming. application developers should be aware of 
the fact that a global variable AIchange is set during the first interpolation cycle 
after an @AI command is run; this can be used within an IF block to initialize that 
AI function's settings. The operation itself is near-instantaneous, but said 
initialization block (which will be run in the next physics frame) is likely to take up 
to a second depending on the AI application.

@AISi[0...255]

Changes the AI state for that particular AI -- AI state is a global variable 
that is used by a given AI application as a way to keep track of its memory. This 
is essentially a debugging command and should never be used during normal 
operation. The operation is near-instantaneous, but – again – a state change 
may trigger time-consuming routines within the AI application.

Kill-and-reset Commands

@KA
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Reboots the NAVCOM AI entirely, forcing reinitialization. The operation takes 
takes between 2 and 5 seconds depending on satellite fix quality, number of 
sensors and display options.

@KZ
Forces the AI to shut down; it cannot be rebooted via software and must be 
power-cycled. The operation takes approximately 0.1 seconds to complete.

@KS
Reboots the NAVCOM AI's sensor parser; this command may also execute 
spontaneously if the sensor parser becomes stalled. The operation takes 
approximately 0.3 seconds.

@KG
Reboots the NAVCOM AI's GPS parser; GPS data will not be updated for 
approximately 2 seconds, but the operation itself is near-instantaneous.

@KV
Reboots the NAVCOM AI's servo pulse generator. The operation takes 
approximately 0.2 seconds.

Telemetry Commands

@TVB
Sends the TV signal to the broadcast output, at 60Mhz (approx. channel 3), to be 
amplified externally; the interpolations-per-second limit is set to the lower value 
(currently 60). The operation takes approximately 0.1 seconds, although the 
signal will take about 0.5 seconds to appear.

@TVC
Sends the TV signal to the composite output, to be modulated and amplified 
externally; the interpolations-per-second limit is set to the lower value (currently 
60).  The operation takes approximately 0.1 seconds, although the signal will 
take about 0.5 seconds to appear.

@TVO
Stops the TV signal generator. This frees up a processor to be used as a FPU, 
and increases overall processing speed; the interpolations-per-second limit is set 
to the higher value (currently 75). The operation is near-instantaneous.
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@TSN i[0...4]
Sets the serial telemetry data to be sent 0 to 4 times per seconds, starting from 
the next second.

@TSN X
Sets the serial telemetry data to be sent in the AI frame following a physics 
frame, effectively tying the telemetry
frequency to the interpolation frequency -- the command @SI 10 ;TSN X will 
effectively request for telemetry 10 times a second. This is not recommended for 
use when more than 20 interpolations per second are performed.

@TSN
Toggles the serial telemetry on or off. If a @TSN 0 command had been  received 
earlier and @TSN is received, telemetry is turned on at a value of 1; otherwise 
telemetry will resume with the last entered value if it was last
stopped with this command.

@TSS [serial string]
Determines what information is sent with each navigation packet; a lowercase 
letter will indicate transmission in ASCII format, while an uppercase letter will 
indicate transmission in the 40-bit binary format described in the OS guide. While 
ASCII format has the obvious advantage of being human-readable from a 
standard terminal, it has to be clamped between 999.9 and -99.9 and thus cannot 
be used to transmit coordinates.
The data items available are:
Letter Item
n Current waypoint (ASCII only)
A/a Altitude in meters
D/d Distance to waypoint in meters
S/s Speed in meters per second
I Latitude of current position (binary only)
J Longitude of current position (binary only)
K Latitude of waypoint (binary only)
K Longitude of waypoint (binary only)
X/x Contents of X variable (see memory map variables below)
Y/y Contents of Y variable (see memory map variables below)
Z/z Contents of Z variable (see memory map variables below)
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H/h Current heading
B/b Current bearing to waypoint
T/t Current tracking to waypoint (by default, equal to bearing)
W/w Current wind direction
l Bitwise “virtual LEDs” sent by AI functions (ASCII only)

Letter order is not important. For example, @TSS hbdsIJKLn will cause 
the telemetry string to be composed of heading, bearing, distance, speed, 
coordinate pairs for position and destination and waypoint number – a 
reasonable data packet to figure out where an AI-controlled vehicle is and where 
it's going.

@TSP
Sends a single serial telemetry string containing the current data items as a 
response to this command, effectively interrogating the AI on its navigation and 
position status. [This command is not implemented yet]

@TSP [serial string]
Sends a single serial telemetry string containing the data items specified, as a 
response to this command, effectively interrogating the AI on its navigation and 
position status. [This command is not implemented yet]

Settings Commands

@SBf[6.5...9.0]
@SBi[6500...9000]
Sets the threshold for the low battery condition; the battery level variable will be a 
ratio between the current battery level (in volts) and the number specified here. If 
a value higher than 1000 is entered, it is assumed to be in millivolts and scaled 
accordingly.

@SE
Toggles echo on or off for the serial terminal, and notifies the user of the change. 
Default is echo off; if using a NAVCOM AI-specific console with a serial transmit 
buffer, it is recommended that echo be left off.

@SIi[1...60] (with TV on)
@SIi[1...75] (with TV off)
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Sets the number of interpolations per second; 1 syncs with the GPS, while values 
higher than that will try to use available sensors to interpolate GPS data. If no 
sensors are connected, dead reckoning will be used. The operation timer delta 
variable is set at 1 / number of interpolations, thus giving a time step for use in 
calculations; the operation timer variable itself is updated during each 
interpolation step. The operation is near-instantaneous, but the new interpolation 
value will only be used at the beginning of the next second according to GPS 
time.

@Fi[1...4] f[-2.0...2.0]
Sets a fudge factor for servo 1/4's swing; values of magnitude greater than 1 will 
still respect the servo's mechanical limits, but allow for faster response in case of 
small adjustments, while values of magnitudes less than 1 will allow for more 
precise response. Negative fudge factors can be used to correct issues such as 
a rudder servo having been installed pointing in a direction other than expected.

@Fv[A...Z] f[-1000000.0...1000000.0]
Overrides a variable value for this interpolation cycle; if a sensor that is 
associated with a variable does not exist or is not functional, the variable remains 
(for example, it's possible to manually set wind direction on a car platform, or 
send altitude data to an airplane in level fight whose altimeter has 
malfunctioned).

Control Commands
@CK f[-2.0...2.0]
Adjusts the correlation between bearing and heading when cross-interpolating 
between the compass or gyro sensor and the GPS; a value of 0.0 turns the 
cross-interpolation off. The default value is 0.5.

@CT f[0...750]
Adjusts the global trim setting for servos; arrow keys (on some terminals and on 
purpose-built console applications) can be used to trim servo channels 1 and 2; 
the CT value determines how big each trim step, in microseconds of pulse, is.

Expression Parser Commands

@? [expression]
Sends a Reverse Polish Notation encoded expression to the parser; the result 
will be displayed on the serial terminal. This can also be used to "query" the 
status of a variable, for example, entering @? A will return the current altitude. 
Variable-less expressions are permitted: this allows for using the AI module as a 
RPN scientific calculator, which is occasionally useful on a boat or airplane. The 
operation takes between 0.1 and 0.6 seconds.
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@EX [expression]
@EX
Sends a Reverse Polish Notation encoded expression to the parser; the result 
will be displayed on the TV screen if active, and saved in the memory map -- 
since this expression is run before all the others, it can be used as a parameter 
for other expressions. Unlike the previous command, this will execute the 
expression (and return the result) at every AI update cycle -- this is useful for 
testing an expression when generating a "wild" value for a  servo, even 
temporarily, would be undesirable. The @EX command by itself erases the 
expression from the screen and from memory. When video is not used, the result 
of this expression is mapped at memory location 264, which corresponds to the 
letter I -- a useful mnemonic is that the expression is "Impatient" since it will be 
resolved first.  The operation takes between 0.1 and 0.6 seconds.

@Ei[1...4]
Sends the result of the active expression, which has been entered with the @EX 
command, to a servo between 1 and 4. This does not erase the expression, so it 
can be entered for multiple servos if desired. A result of 0 means that the servo 
will be centered, while -1.0 and 1.0 will "slam" the servo one way or the other. 
Values higher than +-1.0 are treated as +-1.0 by the servo pulse generator. The 
operation is near-instantaneous.

@Ei[1...4] [expression]
As above, but the expression is entered directly. It is very important that no 
space be between the E and the servo number, and at least one space be 
between said number and the expression. The operation takes between 0.1 and 
0.6 seconds.

@ET
Sends the result of the active expression, which has been entered with the @EX 
command, to the tracking calculator; this can be used to force the AI to maintain 
a specific heading. The default is @ET P which correlates the tracking with the 
bearing to the next waypoint -- for example, if the AI is desired to attempt to circle 
the waypoint at a certain distance,  P 90 +<CR> or  P 90 - <CR> should be 
entered -- this will cause the AI-controlled vehicle to move at right angles to its 
destination. The operation is near-instantaneous.

@ET [expression]
As above, but the expression is entered directly. The operation takes between 
0.1 and 0.6 seconds.

Expression Operators 
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O
p

Comments Arg
s

Example Resul
t

+ Addition of the preceding two values. 2 3  7  + 10
- Subtraction of the preceding two values. 2 10  3  - 7
_ Flipped subtraction of the preceding two values. 2 3  10  _ 7
* Multiplication of the preceding two values. 2 2  5  * 10
/ Division of the preceding two values. 2 3  2  / 1.5

O
p

Comments Arg
s

Example Resul
t

% Modulus of the preceding two values. 2 11  5  % 1
\ Flipped division of the preceding two values. 2 5  10  \ 2
^ Raise to Nth power. 2 10  2  ^ 100
! Negate, equivalent to multiply by -1. This is 

particularly useful for variables, as it's not allowed 
to put a minus sign in front of them; by the same 
token, it is best to enter a negative number as F! 
than as -F. In addition, while Negate works the 
same way as multiplying by -1.0, it executes 
somewhat faster since it's a single token rather 
than two.

1 100 ! -100

| Absolute value. 1 -10  |
10  |

10
10

: Stack swap: This swaps the last two numbers 
entered, and can be used to "flip" an operation as 
above. 

2 10  2  :  \  
3  2  :  _ 

0.2
-1

$ Symmetric square root: this is an "expanded" 
square root that works with negative numbers. For

example, 9 $ returns 3, and -9 $ returns -3. 
The reason for this is to help prevent errors,

and allow use of the square root for rudders 
and steering systems which often need

to be symmetric..

1 -9  $
9  $

-3
3
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) Sine in degrees;Note that this is NOT a 
parenthesis, the  symbol is used because of its 
shape making a good mnemonic

1 90  )
45  )

1
0.707

( Cosine in degrees; works as above. 1 90  (
45  (

0
0.707

O
p

Comments Arg
s

Example Resul
t

] Square Sine: This generates a square wave that is 
synchronized with the sine function, from -1 to 
+1; the function works the same as sine, but any 
positive value returned by the sine is promoted to 
1.0 and any negative ]value to -1.0. This is mostly 
used in conjunction with the operation timer 
variable in order to have a servo follow an 
alternating motion.

1 90  ]
179.99  ]
180.01  ]

1
1
-1

[ Square Cosine: This generates a square wave that 
is synchronized with the cosine function, from -1 to 
+1 as above. This is mostly used in conjunction 
with the operation timer variable in order to have a 
servo follow an alternating motion – the two will be 
90 degrees apart.

1 90  [
179.99  [
180.01  [

0
-1
-1

> Greater-than comparison: This returns 1.0 if the 
first value is larger than the second and 0.0 
otherwise. Obviously, this is mostly used with 
variables.

2 20  10  >
10  20  >
-1  -2 >

1
0
1

< Less-than comparison: This returns 1.0 if the first 
value is smaller than the second and 0.0 
otherwise. Obviously, this is mostly used with 
variables.

2 20  10  <
10  20  <
-1  -2  <

0
1
0

 = Equals-to comparison: This returns 1.0 if the first 
value is equals to the second within the nearest 
integer, and 0.0 otherwise. Obviously, this is 
mostly used with variables.

2 1.1  1.9  =
1.1  2.0 =
1.1  2.2  =

1
1
0

O
p

Comments Arg
s

Example Resul
t

& Choice: If the first argument is greater than zero, 
return the second argument, otherwise return the 

3 1 10 20 &
0 10 20 &

10
20
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third – this is a simple version of an IF...THEN 
block. This is generally used with variables, 
especially for the first argument.

-1 10 20 & 20

} Clamp: This is mostly used for rudders, and 
generates a “dead zone” around zero in order to 
avoid wasting energy and time by performing small 
adjustments that have no practical effect. If the 
absolute value of the first value is larger than the 
second, return the first value, otherwise return 
zero.

2 31 30 }
-31 30 }
20 30 }
-30 30 }

31
-31
0
0

{ “Twirl Function”, explained below. 4 X A B C {

  The “twirl” function is actually a useful shortcut for a type of function that 
can generate a large number of response curves depending on its parameters. 
The twirl function is defined as 

and has been experimentally determined to be very useful for rudders and 
steering systems – the twirl function is provided as a handy shortcut for use.

Variables

Navigation variables are stored in a centralized memory map; up to 26 
variables, one per letter of the alphabet, can be addressed in expression.  By 
default, the variables are assigned in the following manner:

Altitude in meters above sea level -- this is NOT altitude over the ground 
level!
Battery level as a ratio of low battery threshold (for example, if the battery is at 
9.0v and the alarm is at 6.0v, the battery level will display 1.5)
Compass bearing, or the direction the vehicle is aimed at; if a compass sensor is 
not present, this will be left zeroed. A gyroscopic sensor may also be used.
Distance in meters from the selected waypoint.
ETA, estimated time to arrival in best-case-scenario conditions.
[F is currently unused, and can be used by an AI application]
[G is currently unused, and can be used by an AI application]
Heading, or the direction the vehicle is moving toward; due to crosswind or 
crosscurrent, this is not necessarily the same as bearing.
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I is the result for the eXtra expression and can be used as an argument in other 
expressions; in addition, if the TV output is not used the result of a EX command 
can be seen by running a @? I command.
J is the last value for the output to servo 1; this can be used to calculate dynamic 
responses.
K is the last value for the output to servo 2; this can be used to calculate dynamic 
responses.
L is the last value for the output to servo 3; this can be used to calculate dynamic 
responses.
M is  the  last  value  for  the  output  to  servo  4;  this  can be used to  calculate 
dynamic responses.
N is used as the first derivative of turn amount, taken from the last GPS reading; 
it is mainly used to calibrate rudders or steering systems. Since this is taken 
from the GPS only, it is not the same as u unless the interpolator is off.
Operation timer, from mission start, in seconds. The parameter o returns the AI's 
update period.
P is the best calculated heading to  follow in order to reach a waypoint; the 
tracking equation is set to P by default ( an @ET P command is executed at 
initialization). Overriding this variable is strongly recommended against.
[Q is currently unused, and can be used by an AI application]
Range, or arrival distance. Range be set with the @SR command even when not 
mapped to a letter.
Speed in meters per second.
Tracking, or the direction at which the vehicle should aim (either to follow a 
forced-tracking directive, or to reach a waypoint). By default, the result of the 
@ET expression is mapped here.
tUrn amount, or the adjusted difference between tracking and heading. When the 
AI is inactive, this can be seen as a direction to the user (e.g. "Turn 32.4 degrees 
left!"). Left is negative.
Velocity of wind as detected by the vehicle; this is mostly used for sailboats and 
as such, returns the APPARENT wind speed, as in, the wind speed summed 
vectorially with the vehicle speed.
Wind direction as detected by the vehicle; this is mostly used for sailboats and as 
such, returns the APPARENT wind direction, as in, the wind direction summed 
angularly with the vehicle's bearing. If a compass or gyro sensor is present, this 
value is interpolated with that value to allow for a measure of functionality should 
the wind direction sensor malfunction or become unavailable.
X is left unassigned by default; the navigation parameter that becomes 
associated with this letter can be sent down as part of a telemetry string (see the 
@TSS command).
Y is left unassigned by default; the navigation parameter that becomes 
associated with this letter can be sent down as part of a telemetry string (see the 
@TSS command).
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Z is left unassigned by default; the navigation parameter that becomes 
associated with this letter can be sent down as part of a telemetry string (see the 
@TSS command).

Note that a lowercase variable means "how much has the value for this 
variable changed during the last interpolation interval", effectively being the delta 
for its uppercase variable; again, since lowercase o is the interpolation time 
interval itself, from 1.0 to 0.013 seconds, this allows a simple way to use the 
expression parser to solve differential expressions; a parameter's derivative can 
be obtained by entering [a...z] o / and can be recognized as the familiar Leibniz 
notation d[a...z]/dt.

Variable Commands

@V[A...Z] i[0...324]
The variables described can be assigned to point to different navigation 
parameters than the ones preselected. Note that since the memory map is byte-
addressable but contains 32-bit values, the number entered must be a multiple of 
4 – if a number that is not a multiple of 4, the next lowest multiple of 4 is used 
instead (so for example, typing @VA230 would assign the variable A to memory 
location 228). Memory map locations 0 to 103 are occupied by the variables A to 
Z themselves; a full listing of the memory map location can be found in the table 
below. Unless indicated otherwise, all values are stored as floating point; if a 
value is stored as an integer, it is strongly recommended that it not be mapped to 
a letter variable except for debugging purposes.

By default, letter variables are mapped to offset 232 onwards – their functionality 
is explained above.

@V[A...Z]~
This command has a variable dereferenced (pointing to itself); this causes it to no 
longer being auto-updated. This can be used by putting the variable in a formula, 
and use the @F[var] command modify the formula without having to retype it in 
its entirety.
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IV: Virtual Console
The NAVCOM AI virtual console is a Windows-based application designed 

to provide a graphical representation of data received via serial telemetry; while 
the NAVCOM AI platform is able to work with any serial terminal, an enhanced 
terminal with graphics capabilities allows for more intuitive access to information 
by a human pilot or a user monitoring the AI-controlled vehicle remotely.

The basic layout of the NAVCOM AI console.

In the interest of simplicity and ease of access, the virtual console 
runs in one form; any Windows computer with a SVGA-capable display or higher 
can show the basic layout correctly (the preset commands will not appear at 
640x480 resolution, but the application is otherwise usable on older VGA 
displays.).
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Communications Panel

The rightmost side of the application, marked COM, is essentially a 
general-purpose serial terminal optimized for use with the NAVCOM AI platform; 
the main read-only text box contains the AI's responses to user commands, and 
the smaller read-only box right underneath contains the last characters received 
(for efficiency, the console only parses an incoming data packet after receiving a 
carriage return). Right under is the current size of the used transmission buffer, 
set to 64 characters to match the NAVCOM AI's reception buffer – the console 
ensures that a maximum of 64 characters are sent at a time, and allows a user to 
monitor command length. The checkbox next to the buffer usage indicator allows 
bypassing of the buffer entirely, and sending characters one by one as would 
happen with a standard serial terminal.

The upper right corner of the window contains connection settings and a 
status message, which will comment on the last user action or the last data 
packet received from the NAVCOM AI; the connection settings are fairly 
straightforward and involve COM port and baud rate selection, plus a connect 
and disconnect button (the COM port is set to operate at 8 data bits, no parity, 1 
stop bit); the NMEA option box controls moving-map output and will be discussed 
in the moving-map section.
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Navigation Panel

The leftmost part of the screen displays navigation information, emulating 
as much as possible the layout of a standard H.S.I. (horizontal situation indicator) 
avionics instrument. Foremost is the compass display, with an underlying 
compass rose indicating cardinal directions and four “clock hands” giving 
navigation information as follows:

HEADING: The current heading of the vehicle, or its direction of travel.
BEARING: The bearing to the vehicle's target, or its intended direction of 

travel.
TRACKING: As above, but to the next waypoint (due to obstacle 

avoidance or
tacking routines, this may be different from current target). 

Tracking will not be displayed if equal to bearing, unless
 requested.

WIND: If available, the wind direction; the two numbers express it as a 
relative angle and absolute angle (both are often required in 
navigation).

Clicking on each of the four words will enable or disable display for 
each navigation parameter – this is different than requesting the AI to send 
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information, and is best used to turn off parameters that are deemed to clutter the 
display at any given moment. In general, the appropriate parameter's clock hand 
will turn on as soon as the relevant data is received by the AI, and stay on unless 
clicked upon. The numerical displays will remain on even if the graphics are not 
being drawn. All indicators are accurate to 0.1 degrees and display information in 
the nautical standard (0-359.9 degs)

The checkbox immediately underneath the compass determines if the 
compass rose rotates (thus keeping the HEADING clock hand pointing at the top 
of the display; this is recommended for manual navigation) or keeps in a fixed 
position with North on top (this is recommended for monitoring, as it makes it 
easier to follow the vehicle's progress on a map).

To the left side of the compass is an altitude indicator; as with the clock 
hands, this will appear once altitude data is received, and can be turned off by 
clicking on the Altitude label underneath – altitude data will still be displayed 
numerically. The indicator is accurate to 0.1 meters.

Underneath the compass display are numerical indicators for altitude (right 
below the altitude slider), ground speed, distance, three extra data items that will 
report the values of the NAVCOM AI variables X, Y and Z respectively (see the 
command list for more information), and number of next waypoint. Note that the 
Distance label can be clicked to disable or enable the graphical distance indicator 
– when distance is less than 100 meters, the horizontal bar underneath this row 
of numerical indicators will gradually fill until the waypoint is reached; this allows 
for quick, at-a-glance progress monitoring in the final approach phase. Unlike 
other graphics, the distance indicator must be enabled manually – it will remain 
inert until distance is less than 100 meters.

Above the BEARING and HEADING label are two numerical 
indicators for latitude (leftmost) and longitude (rightmost), in standard 
degree/minute format; these indicators will activate upon receiving coordinates 
from the NAVCOM AI.

In the top part of the window's NAV side is the turn indicator: a text box will 
give a turn suggestion made of a number and a letter such that – for example – 
6.2 L will mean “Turn 6.2 degrees left”. The moving slider next to this message 
box covers 60 degrees left and right of the desired orientation, thus giving a 
higher resolution than the compass below – matching the slider to the yellow line 
is equivalent to matching the yellow clock hand to the blue clock hand, and 
indicates that the vehicle is navigating towards its intended target (If the vehicle 
is off course more than 60 degrees, the slider will be “slammed” to the right or left 
side depending on which way the vehicle should turn). The turn indicator display 
will only appear when HEADING and BEARING information is being received, 
and can be turned off by clicking on its message box.
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Macros

On the bottom of the application windows are eight “macro” command 
buffers that can be used to send frequently-used commands by clicking on the 
associated button to the right of the text box; these buffers can be pasted to as 
required by using the standard Windows key combination (CTRL-V). The 8th text 
box is intended for use with sending a commonly-occurring set of coordinates to 
the AI via the WC command (thus, it's possible to copy the output of a WD 
command directly in to this text box for future use).

Due to the availability of many options for moving-map software, both 
commercial and open source, it was determined to be impractical for the 
NAVCOM AI console to reimplement these functions from scratch. Instead, two 
options are provided for the use of a moving map – link to the Google Maps 
service, and NMEA output on a virtual serial port that can be redirected to an 
external moving map software.

Moving Map

The default option is “None” -- no output will be given.  If “Internal” is 
selected, an internal web server is started on TCP port 3705. Clicking on “Map” 
will expand the NAVCOM AI window to show a browser window running a Java 
applet that retrieves map data from Google Maps and paints a marker on the AI-
controlled vehicle's position; alternatively, a web browser of the user's choice can 
be pointed to http://localhost:3705 and display the same information. If the 
computer's Internet connection provides an external IP and does not block that 
port, it becomes possible for other Net users to monitor the AI-controlled vehicle's 
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position in near-real time. The Java applet updates the vehicle's position every 
second and redraws the map (recentering it) every ten seconds.

If a COM port is selected, the $GPGGA and $GPRMC NMEA sentences 
(two common sentences, at least one of which will be recognized by any current 
moving-map software) will be output at the standard NMEA baud rate (4800 
baud) every second on said COM port and transmit position, heading and 
velocity data; in effect, this causes the PC running this application to emulate a 
standard GPS unit – using the provided virtual COM port pair, this information 
can be sent to any moving map software.

Using a physical COM port and the appropriate cable, it is even possible 
to send the output to any other computer or any other NMEA compatible device 
such as data loggers or differential-GPS base stations – since the NAVCOM AI 
understands the $GPRMC sentence, it's even possible to send the output to a 
second NAVCOM AI unit! (Note that this is an extremely roundabout way of 
doing so: two NAVCOM AI units can be put into communication directly via their 
expansion ports, or indirectly via their radio modems).

Console Tutorial

Using the virtual console is extremely straightforward for anyone who has 
ever operated a serial terminal package, and very easy to learn for users that 
have not; either way, it is advisable to practice using the terminal a few times 
before launching an AI-controlled vehicle.

First, determine what COM port the radio modem has been connected to; 
USB radio modems that emulate a COM port will generally notify the user of this 
information upon connection; if there are any difficulties, use the setup 
application that came with the radio modem; if the radio modem is embedded in 
a cell phone, it may be necessary to dial the cell phone connected to the 
NAVCOM AI and configure it for serial port emulation. (IMPORTANT: Be sure to 
set up the remote phone as a modem before launching the vehicle!). Once these 
steps are completed, select the appropriate COM port and click on the Connect 
button – the default baud rate of 38400 will be preselected for you.

Next, turn on the NAVCOM AI if you haven't done so yet; the copyright 
and initialization messages should appear in the main terminal window. Hitting 
ENTER after clicking on the command text box will result in an error message 
(“Commands must start with the @ symbol”) from the AI – this shows that 
communications are working; note that the @ symbol is put at the beginning of 
each line automatically by the console, although if you are used to typing it in 
yourself no ill effects will result. If communications are not working, check your 
COM port settings and be sure that they match those on the NAVCOM AI's radio 
modem.

Once communication has been established, try to enter a few commands 
and watch the response – note that every time the NAVCOM AI produces a 
response, you will be notified by the status box as to how many bytes were in it. 
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If you are practicing with the NAVCOM AI before launch (and if you are 
reading this, you probably should not have it running a vehicle yet!), put the GPS 
in demo mode and set it to a heading and speed of your choosing. Then, click 
once on the compass – this sends the @TSN command to the AI, having it start 
to send telemetry data once per second; what data will be sent depends on the 
AI type selected or the last @TSS command sent, but the defaults will give basic 
navigation data and coordinates. 

The relevant items should turn on in the NAV section of the application 
window; change the heading in the GPS demo option screen, and note how the 
compass and turn indicators follow – the second delay is due to the fact that the 
GPS is sending data once every one or two seconds, and since the actual 
vehicle is not moving other sensors are not returning meaningful data. Click on 
the compass again to disable telemetry; the last displayed data remain in the text 
boxes and graphics, to allow for a screen print.

Depending on the AI application, five “virtual lights” might appear above 
the COM window – this is a way for AI application programmers to alert users of 
a particular situation that needs to be shown more visibly than simple text (for 
example, an obstacle within sensor range); these lights will turn on or off 
depending on the application, and their meaning varies with applications. A quick 
beep may also be produced.

Now, enter the @TSN4 command; note how the display is updated faster, 
and the status window reports a NAV packet received more often. NOTE: When 
using a satellite phone, or a TACS (pre-2002 for most models) cell phone as the 
radio modem, do not set TSN above 2 as to not cause lost packets due to 
excessive traffic.

Feel free to experiment with AI commands and note their effect; for 
example, set a waypoint (in the AI using @ commands – GPS waypoints are not 
communicated to the AI) and try to navigate toward it using the compass and turn 
indicator; when getting close, click on the Distance label and note the arrival 
gage filling up.

Once you have familiarized yourself with basic operation, select “Internal” 
from the NMEA menu and click on “Map” to display the moving map (be sure to 
have a connection to the Internet before doing so; a nonexistent or misconfigured 
connection will result in a white window, in which case the map must be turned 
off and turned back on when a connection is established) or select a NMEA 
output port and set your moving map software to communicate with it. This is all 
you need to know to use this console.
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V. The NAVCOM AI Board
The NAVCOM AI 1.1 board shown below was designed by me and 

Chrissy Keller, incrementally improving my hand-wired first prototype (1.0). The 
schematic was made in Multisim from the original drawings, and the board was 
designed in Ultiboard.  The Gerber files thus generated were sent to the PCB 
Express company where the board was machined 

NAVCOM AI 1.1 board, turned to the side; the “top” is considered to be, following 
the onboard text, where the DE-9 connector is.

This board includes three regulators, the Propeller chip (our main 
processing unit which rides on its own daughterboard with regulators, capacitors, 
crystal and EEPROM ), the XBee Pro radio modem, two Picaxe-08M 
microcontrollers, and a multiplexer that performs double duty as a level shifter, in 
addition to all the necessary passive components such as resistors and 
capacitors; the precision trim potentiometer in the upper right corner is used to 
calibrate the input for the Picaxe responsible to discern battery level. 

a. Regulators 
The electronics on the NAVCOM AI require different voltages.  The 

primary supply voltage (generally a 7.2V or 9.6V Ni-MH battery) needs to be 
regulated down to 5V for the Picaxes, radio, sensors and multiplexer, to 3.3V for 
the Propeller CPU and the radio modem (and optionally the GPS), and to 
between 5.5 and 6 volts for the servos.
I credit Christine Keller, Felix Carrillo and Crystal Carrillo for the decision to use 
the FAN1084, which is a low-dropout, three-terminal regulator with a 4.5A output 
current capability – the prototype used a LM317 5A adjustable regulator for the 
servos and five U7805s in parallel for everything else; this version (1.1) uses 
three different power buses in order to reduce crosstalk and voltage jitter, and to 
partition the risk of catastrophic breakdown due to overcurrent. There are a total 
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of four regulators on the AI board, the  FAN1084s indicated above and a low-
dropout 2.5A 3.3V regulator on the Propeller daughterboard that handles the low-
voltage loads – this regulator is fed from its own  FAN1084 in order to reduce 
possible heat buildup by performing the regulation in two stage, and to provide a 
clean DC voltage at input for added safety, while the other two  FAN1084s 
handle the servos and the other electronics respectively.

b. The Propeller
The Propeller chip is a 3.3V system designed to provide high-speed 

processing for embedded systems while maintaining low current consumption 
and a small physical footprint. In addition to being fast, the Propeller provides 
flexibility and power through its eight processors, called cogs, that can perform 
simultaneous, independent, or cooperative tasks, all while maintaining a 
relatively simple architecture.  The Propeller sits on a daughterboard that 
connects to the main board by a 40-pin DIP socket; the daughterboard contains a 
regulator, backup EEPROM memory, 5Mhz crystal, reset button and a simple 
three-transistor level shifter for RS232 serial communications for the 
programming port. 

c. The XBee Pro 
The XBee Pro  is a RS232 radio modem with has an operating frequency 

of 2.4 GHz and sixteen software-selectable channels, as well as a 256 character 
buffer. The XBee has an indoor/urban range up to 100m (~300 ft) and a line-of-
sight radio frequency line-of-sight range of up to 1.5 kilometers (slightly less than 
one mile).  The transmitter’s power output is 100 mW,  and the theoretical 
maximum data frequency is 250,000 bps.  The XBee has a receiver sensitivity of 
-92 dBm. For the NAVCOM AI, the XBee is configured as a transparent serial 
modem and its buffer split equally between transmission and reception; an 
integrated active antenna is used at both transmitting and receiving ends, 
although provisions were made for an external antenna should the need have 
arisen. To improve reliability, baud rate is kept at a relatively low 38400bps in 
both directions – each packet is sent three times and, in case of difference, the 
two identical packets are used (if all three packets differ, they are all discarded). 
Since all data transmission is asynchronous serial, any RS232-compatible device 
may be used – in particular, a GSM cell phone can be easily adapted to use text 
messaging services (SMS) as AI commands and responses; this would simply 
require a level shifter, an inverter and possibly a character buffer.

d. Picaxe 08M
The PICaxe08M is a very inexpensive microcontroller that runs a pBasic 

interpreter in a similar way to the popular BASIC Stamp product line; it uses an 
internal RC timebase with a digital potentiometer and can be run at frequencies 
from 32Khz (16 IPS) to 8Mhz (4000 IPS), with a recommended manufacturer 
rating of 4Mhz (2000 IPS).  It has five I/O pins, three of which are programmable 
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as input, output or 10-bit ADC input.  All these features are conveniently 
packaged in an 8-pin DIP for the price of about $3. Two Picaxes are present on 
board

The first Picaxe is merely used as an ADC to discern battery level, which 
is read through a trim potentiometer acting as a voltage divider from the 
unregulated battery input; this value is scaled and transmitted serially to the 
Propeller. As this unit respects the NAVCOM AI sensor standards, further details 
on the software can be found in the Sensors section.

The second Picaxe can be set, using a jumper, to discern pulses coming 
from either the radio input labeled Channel 1 or the one labeled Channel 5. At 
this stage, it's important that a human pilot be able to quickly override the AI in 
case of erratic behavior; therefore, this microcontroller's task is to quickly and 
reliably allow such overriding. Depending on a jumper setting, the Picaxe will 
read pulses from either Channel 1 or 5. If Channel 1 is selected, the reception of 
any pulse in the valid servo range will cause the Picaxe to have the multiplexer 
pass the RC signals to the servos; this is useful in case only a two- or three-
channel servo is available, as is the case with most entry level RC setups. This 
mode allows the human pilot to effectively use the remote control's power switch 
as a switch between RC and AI operation – during RC operation, the Channel 1 
pulse is sent to the multiplexer normally after being read by the Picaxe (a known 
problem with the Picaxe is relatively low input impedance, and the multiplexer 
handles any voltage drops caused by the reading). If Channel 5 is selected, the 
Picaxe behaves somewhat differently – a servo-type pulse with a duty cycle 
between 5% and 7.5% will cause control to be transferred to RC, while a pulse 
with a 7.5% to 10% duty cycle will assign control to the AI. This allows Channel 
5, which is otherwise not forwarded to any servo, to be used as a switch to allow 
quick change in behavior if the human pilot uses a higher-end RC setup. Should 
no pulse be present, or be outside the valid lengths (with a 20% tolerance), the 
Picaxe will raise a signal to the Propeller notifying it of an assumed radio failure 
and allowing the AI to take the necessary measures (for example, a NAVCOM AI 
controlled airplane might assume that the RC transmitter is out of range, and set 
itself to fly in circles to allow the pilot to move closer to the plane's location). In 
either mode, the signal driving the multiplexer is also forwarded to the Propeller 
so that  the AI may know whether it's in control or not; this can be used to, for 
example, switch from telemetry to navigation mode without any additional user 
input.

While realistically a single Picaxe could have absolved both roles, it was 
decided to separate the functions in order to prevent any overvoltages from the 
voltage divider from damaging the microcontroller and thus possibly disrupting 
the pulse detection and signal switching functions.

Neither Picaxe appears in the picture above, as both units and the jumper 
are situated under the XBee Pro.

e. Multiplexer
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This component is a standard 74HCT157 noninverting 2-to-1 quad 
multiplexer, upgraded from the prototype's  74LS157 in order to negate the need 
for a separate level shifter; it is used to switch the servo input's signals between 
the radio and the AI and back, according to the pulse width detector described 
above. The multiplexer receives the servo pulses (period 20ms with a 5% to 10% 
duty cycle) directly from both the radio and AI, and sends either one to the servo 
outputs; in the process, the 3.3V signals from the AI are promoted to TTL level 
(5V).

f. Connectors
Most connectors on the NAVCOM AI board follow the de facto standard 

configuration for servos (three pin, 100mil spacing, signal-power-ground), with 
the main exception of the GPS which is configured as ground-tx-rx-power in case 
the GPS unit needs to be set or reset via software. Using this standard allows for 
easy acquisition of extension cables, crimpable connectors and so on, while 
protecting both the electronics in the peripherals and the power supplies on the 
motherboard from overcurrent should the connectors be inserted the wrong way 
in. For all connectors present on the NAVCOM AI board, the ground wire points 
towards the top left corner: horizontal connectors have their ground pin on the 
left, vertical connectors on top.

Sensor pins use the same s-p-g layout, the signal being TTL serial data 
coming from each sensor into a different pin on the Propeller; a limiting resistor 
allows use of standard RS232 voltages for externally powered sensors.

The two TV outputs allow connection respectively of an external amplifier 
or a composite input to video receiving device.

Finally, the expansion slot provides application developers to direct 
access to the first 10 pins of the Propeller, a ground pin, and a 5V line connected 
to the regulator feeding the low-voltage regulator  – it is thus possible to connect 
two NAVCOM AI boards through a high speed synchronous 8-bit bus (the two 
extra lines being used for DTR and RTS signals), even with one motherboard 
powering the other as long as the slave board doesn't need to support servos.
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Power connector (2 pins, power and ground)
5) 4.8~6V servo power input if the internal servo regulator is not used (2 pins, 

ground and power)
6) Expansion slot or double-up connector (12 pins, 8 data lines – 5V power – 

ground – 2 flow control lines), can be used as general purpose expansion
7) Modulated TV output to signal amplifier (2 pins, ground and signal)
8) GPS connectors (ground – tx – rx – 3.3V power)
9) Baseband TV output to video composite input (2 pins, signal and ground)
10)Power output to RC receiver (2 pins, 5V power and ground)
11)Inputs from RC receiver; channel 5 is on top, slightly apart from the others 

(3 pins, ground – 5V power out to radio – signal in)
12)Sensor connectors, 4 on top (3 pins, ground – 5V power out – signal in)
13)Servo output connectors, 4 on top (3 pins, ground – 5V power out – signal 

out)

g. Power usage and electrical interfacing information
Outputs
FAN1084 – 4.5A each, configured for 5V output; servo unit can be heat 

sinked
7803 – 5A, 3.3V output
74HCT157 – 30mA sink/source per pin, 100mA total, 0-5V
Composite outpit – 0~2.8V analog signal, baseband
Broadcast output  – 0~3.3V analog signal, CH3 (60Mhz), modified sine 

wave
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Inputs
Sensors in – 3.3 to 12VDC signal high, -12 to 1VDC low, max sink 20mA 

each, 51KOhm input impedance average
Servo in – TTL, max sink 40mA each, high input impedance

Expansion port
5V power output, do not exceed 2A source
0V ground, do not exceed 2.5A sink
3.3V LTTL data lines, recommend using a 1K resistor if fed TTL signals

Power consumption (worst case scenario)
Propeller – 1.64A measured with all 8 cores running
Picaxes – 80 to 120 mA each at 8Mhz
GPS – 250 to 400mA typical (tested with LS-40EB and Garmin eTrex)

Using a 3300mAh Ni-MH 7.2V battery:
Maximum recorded total for whole board by itself 2.41A  (17.25W)
As above, plus 3 self-powered sensors 3.28A (23.6W)
As above, plus 2 standard servos 3.65A, peak (26.28W)
As above but with 1 std, 1 heavy-duty servo 4.11A  (29.6W)

A future revision may include a switching power supply for driving the 
servos, as most of the power is consumed there – the values indicated are worst-
case peak currents, measured during 8-hour endurance runs and discounting 
startup current. With the indicated battery, system life is between 12 to 14 hours, 
with the CPU beginning to falter with the battery at approximately 6.55 volts as 
measured by the internal battery voltage checker. 

As the  FAN1084 is inexpensive and features thermal shutdown, it will 
likely continue to be used to drive the electronics – while the cascaded linear 
regulator approach may seem inefficient, it has the beneficial effects of providing 
very clean DC for critical systems (CPU, GPS and radio modem) and spreading 
the heat buildup among the two regulators. A future low-power version of the 
NAVCOM AI board using SOIC components may use one or two DE-SW050 
miniature switching voltage regulators to drive the electronics, along with larger 
bypass capacitors (experiments performed with a 1-Farad HPC capacitor show 
that it is able to power the entire board by itself for four second, time enough to at 
least send a distress data packet).
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VI: Sensors

Sensors for a NAVCOM AI application, as explained earlier, can be of 
many types; the NAVCOM AI API allows an application developer to add sensor 
types quickly and reliably within the framework. 

The NAVCOM AI OS requires that sensors transmit data in NMEA format; 
this generally requires a microcontroller. A compass is a common sensor to add 
to a NAVCOM AI vehicle due to its ability to provide orientation data with better 
frequency than a GPS; in a typical compass sensor, a pair of Hall sensors 
perpendicular to one another would be connected to a microcontroller and 
measured simultaneously (or near-simultaneously); the microcontroller then has 
the option of either converting the values to an angle by itself, or sending the raw 
values to the CPU and have it do the conversion – this “raw” versus “refined” 
model exists for most sensor types.

An example sensor configuration using a Basic Stamp 2 as a compass.

The NAVCOM AI in default configuration supports altimeter, clinometer, 
compass, gravimeter (accelerometer for the Z axis), up to three range sensors, 
and wind vane.

The motherboard contains a battery level sensor, which is itself read as a 
NMEA device, and a radio signal detector which, due to the necessity for quick 
reaction time, is connected to the CPU via two digital pins; one pin notifies the 
CPU whether it or the radio has control, while the other indicates an unexpected 
interruption of the radio carrier signal. A jumper is provided to enable or disabled 
this function; when disabled, the radio sensor checks for the presence of a valid 
servo pulse on channel 1 and reports its presence or absence.

When enabled, the radio sensor checks channel 5 instead, and reports 
whether the pulse is more or less than 1500 microseconds (allowing channel 
switches on high-end remote controls to be used to 'arm' or 'stand down' the AI 
board as a whole), using the second line to indicate an error if no signal or a 
spurious signal is received on channel 5 while the AI is supposed to be stood 
down – the AI can be set to interpret this as an unintended loss of contact with 
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the remote control, and react appropriately (for example, by moving in circles and 
wait for contact to be reestablished, or by trying to return to the launching point).

Worth noting is that two or more AI boards can be cascaded through the 
servo interfaces; a slave board would be getting a “radio carrier” signal when the 
board above it in the chain has control. This can be useful for very complex 
applications that require more than two boards.

For the two internal sensors, the motherboard uses Picaxe-08M 
microcontrollers for their low cost, ability to be reprogrammed without special 
equipment, and integrated 10-bit ADC (used, for example, by the battery sensor). 
Since the NAVCOM AI OS consumes NMEA information, analog or digital 
sensors may be used as shown below.

Analog sensor block diagram. 

Digital sensor block diagram. 

The level shifter may be required by some microcontroller to match the 
CPU's inverted TTL serial input (0-5v, 9600BPS); an application developer may 
change the baud rate, but 9600 or below is recommended.
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VII: ELAINE: Sailing AI application
ELAINE's AI exists as an application riding on top of the NAVCOM AI OS, 

and consists of three parts: a sail angle function, a steering function, and a state 
machine to handle tacking. In addition to these, ELAINE features an auxiliary 
motor which can be turned on from the sail servo, and a bilge pump with 
automatic water level detection; for reliability, these systems exist on their own 
power circuits and are electrically isolated from everything else; in addition, the 
bilge pump's electronics are doubled – in case of catastrophic failure, ELAINE 
would still be able to guarantee its survival.

The sail-angle function commands the sail servo to keep an optimal 
angle between the sails an the hull in order to produce thrust and move the boat 
forward; when climbing against the wind, the sail acts as a wing and transforms 
its “lift” into thrust; when the wind is coming from the boat's broadside, the sails 
act more like funnels, redirecting the wind's direction towards the rear of the boat 
and propelling the boat forward by reaction. Finally, when traveling with the wind, 
the sail acts as a parachute, and drags the boat along. In the first mode of 
operation, drag is actually a major liability, tending to push the boat off course 
and tilting it on the longitudinal axis (which requires a centerboard and a 
counterweight to prevent the boat from capsizing); thus, while only one 
parameter is being changed – the angle of the sail to the hull – it must be 
controlled with great care for optimal results. In addition, once the boat gains 
speed, the relative wind with respect to its hull changes in both direction and 
velocity (the wind's absolute speed and direction must be summed vectorially 
with the boat's), requiring continuous adjustment even with constant weather 
condition if optimal speed is to be reached.
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The only way to find a workable mathematical formula tying wind direction to sail 
angle was by trial and error, a process which must be repeated every time the 
boat's configuration changes significantly; for ELAINE's hull, a valid relation was 
found to be

where S is the servo swing, W is the relative wind direction, and T is a 
predetermined angle (the tacking angle) which, for ELAINE, was found to be 
approximately 40 degrees during normal conditions – this means that ELAINE 
can climb up to the wind as long as the angle between the wind's source and her 
bow is less than forty degrees.

This equation can be overridden in three cases, in order of priority: if the 
clinometer detects that ELAINE's mast is bending too far from the vertical, sails 
will be allowed to slack somewhat in order to reduce stresses on the mast, 
eliminate the risk of capsizing and allow the compass to keep working properly. If 
ELAINE's speed is less than that which would be achievable by the onboard 
motor, the sails are reeled in and the motor is turned on instead – this allows 
ELAINE to detect being effectively becalmed even with no wind velocity sensor. 
Finally, if a waypoint is closer than a specified distance, the motor is  employed 
for the final approach due to the need for maneuverability – essentially all 
modern sailboats dock under power, and even the galleons of old often had to be 
towed by rowboats to their docks if wind conditions were less than perfect for an 
approach under sail.

All the numerical constants described above are associated with letter 
variables, and can be modified on the fly through the XBee radio modem, as 
follows:
A Tacking angle
G Result
Q Approach distance
Invoking the AI function sets the default tacking angle to 40.0 and assigns the 
variable G to servo 2 – adding or removing a fudge factor can be accomplished 
by the command @E2 G fudge + through the XBee. 

The steering function must take into account the fact that a sailboat's 
heading (the direction of movement) is not necessarily related to its bearing (the 
direction at which the bow is aimed) due to current drift and the sideways 
pressure exerted by the wind on the hull and sails during most wind conditions; 
this forced the use of a differential approach can't be readily expressed with a 
mathematical function.
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The NAVCOM AI OS calculates, based on GPS and sensor input, how much to 
turn to face its intended direction (which normally matches the bearing to the next 
waypoint); this value is assigned to the U variable, and its differential with respect 
to time to the u variable. After initialization or reaching a waypoint, the rudder is 
centered (thus assigning a value of 1500 to the servo pulse generator); this value 
is added to or removed from depending on u every AI frame, following the 
formula

where J is the value of the servo pulse for that cycle – essentially, the AI uses its 
delta variables to solve a differential equation, with F as a fudge factor.
To prevent overcorrection which would result in “drunken sailing”, the rudder is 
left to its current position if U is less than a specified value; furthermore, the 
overall value of the servo pulse can be capped at less than full swing by using 
another variable. As above, numerical values are assigned to letter variables and 
can be changed via commands, as follows:

V  The result of the equation, which is assigned to servo 1 (this can be 
modified by sending the @E1 V (fudge) (operation) command).
JThe value of the rudder angle during the previous cycle
uThe first derivative of U
LThe primary fudge factor
M The allowed swing range of the servo
ZThe “dead angle” as far as steering is concerned

These values would change with hull configuration (and in a smaller 
measure, weight), and the defaults are significant for ELAINE's particular shape 
and size; this equation can also be considered a useful generalized rudder 
equation, and is included in the basic NAVCOM AI package for application 
developers to use as an example.

The tacking state machine allows more efficient navigation. By having 
ELAINE simply turn on the motor when its bearing to a waypoint would put her 
against the wind, it's possible to have basic sailing with just these two functions; 
tacking maneuvers require a computation layer above this. The NAVCOM AI OS 
saves the great-circle bearing to the next waypoint in a variable, assigned to the 
letter P by default; likewise, the tracking expression is initialized to this variable 
(equivalent to the command @ET P ) to allow for moving to the shortest route. By 
modifying the tracking  expression, ELAINE can be directed to take a different 
route without having to interrupt the workings of the rudder servo (and thus 
keeping the modules independent, allowing parallel development and better 
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reliability). A simple state machine is implemented to allow ELAINE to decide 
when and how to tack.

Tacking finite state machine

The default state is “not tacking”; the decision to tack is made when 
normal navigation would bring ELAINE to face the wind at less than the tacking 
angle (the same variable is used for the state machine and sail-angle function); 
the direction depends, obviously, from which side the wind is coming from. In that 
case, the state machine sends a @ET W A -  (left) or @ET W A + (right), which 
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translates as “Set course to the heading that will cause the boat to climb against 
the wind at the minimum feasible angle”. If this does not happen in a a specified 
amount of time, the boat will attempt to jibe instead – that is, turn 270 degrees or 
so as to move with the wind for a few moments and gain sufficient momentum to 
complete the maneuver.

Once tacking, the boat can either stop the tack if the wind changes and 
return to its normal status, or change tack after a specified distance has been 
traveled or a specified time has elapsed, whichever comes first; the AI will 
attempt to change tack, helping itself by turning the motor on while facing the 
wind directly (this operation exists on a separate line, and can quickly be 
commented out during a race) and jibing if necessary. The approach distance is 
checked by the state machine as it is checked by the sail-angle function, and 
forces the state machine to remain in a non-tacking state during approach.

A future development will include the ability to decide how often to change 
tack based on allowed crosstrack error (the size of the “corridor” between 
waypoints in which the boat zig-zags during tacking), by having the tack change 
when the direct-route tracking becomes a specified fraction of the tacking angle: 
having the ratio be 1/1 would cause one tack between the two waypoint, have it 
at ½ three tacks, ¼ four tacks and so on. This has not been implemented due to 
the need to stick with a simpler, more reliable algorithm for this prototype.
The letter variables used by the state machine are:

A Tacking angle
Q Approach distance
XMaximum length of each tacking leg in meters
YMaximum duration of each tacking leg in seconds
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VII: Test Results

A number of tests were performed during the design process. Deployment 
of ELAINE requires two people and approximately 15 minutes to pack up the 
boat and equipment and drive to Woodlawn Lake. Early secondary tests 
performed without witnesses (requiring approximately 25 minutes for 
deployment), generally for the purpose of refining fudge factor before the ability 
to change them on the fly was implemented, were not recorded. Additional 
information can be found in the development diary.

Early Testing – Summer 2006
Since the development of ELAINE and the NAVCOM AI proceeded in 

parallel, multiple tests were necessary at every stage of development. 
Preliminary tests were conducted in the summer of 2006 using a Picaxe-28 
microcontroller and a FPU chip, on a RC car to test basic navigation and on 
ELAINE's hull to test seaworthiness – the relatively small processing ability of the 
Picaxe, even augmented with a floating point unit, caused the car to either 
oversteer or understeer with little capability for correction; the form factor for the 
prototyping board this system was built on, however, proved seaworthy and 
defined the final dimensions for the NAVCOM AI board.

Seaworthiness / Telemetry Test 1 – August 2006
This test was conducted using the hand-wired NAVCOM AI prototype 

board, primarily to test its seaworthiness and to see whether the wind information 
was being relayed to the base station correctly; no servos were connected to the 
board, and the GPS, while on board, was left disconnected during most of the 
run.

Overall results were positive, proving that the basic concept was sound – 
at this time, ELAINE carried two front-mounted sonar sensors; those functioned 
for a short time before sustaining water damage. The need for a bilge pump was 
realized.

Navigation Test 1 – October 2006
A simple navigation algorithm was developed and tested out, but proved to 

work only when the boat has the wind in its back – the relevant information was 
saved in case the need for developing a powerboat AI arises.

Seaworthiness Test 2 – October 2006
The purpose of this test was to check the seaworthiness of the new 

professionally milled NAVCOM AI board, and give an initial check to the basic 
navigation algorithm. Water damage once again prevented use of the sonars, 
and the navigation algorithm proved insufficient to deal with the mixture of forces 
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that a sailboat under way is subject to. Some water damage was sustained by 
the electronics due to an underpowered bilge pump.

Navigation Test 2 – February 2007
A different algorithm was tested and found to be sound in principle, but 

lacking in practice. What was decided to be the final version of the bilge pump 
performed satisfactorily.

Car Tests – January / March 2007
A RC car proved of some use during calibration due to the ease of 

deployment; unfortunately, the low-end nature of its steering system prevented 
accurate control even when driving it manually. Lessons learned from the car 
tests included how to interpolate between GPS and compass and how to deal 
with an uneven power supply (at one point a 1 Farad double-layer capacitor was 
fitted to the sensor power circuit!) and magnetic interference to the compass from 
other components; the car was also used to test the reliability of the serial 
telemetry system.

During this period, tests related to the Ithuriel projectile drop project were 
run, consisting of distance measurements taken from a moving full-sized truck. 
These tests allowed identification of a loss-of-sync problem existing with our 
GPS, and its correction.

Telemetry Test 2 – March 2007
The final version of the telemetry section (console, relative/absolute wind 

direction, turn indicator) was tested with satisfactorily results, to the point that it 
was possible for me to steer the boat by telemetry. The sailing AI was activated 
and allowed to control the sail servo, with rudder still in human hands, and found 
to be performing satisfactorily albeit slowly; cross-interpolation of wind sensor 
readings with compass sensor readings improved the response speed 
noticeably.

Comprehensive Test – April 15, 2007
This test confirmed the ability of ELAINE's state machine to perform 

tacking maneuvers correctly; the AI was led out into the lake under manual 
control, and had to return home by itself. After a disappointing run due to 
oversteering, the correct value for the various fudge factors was determined and 
programmed in.

The next run saw ELAINE switch to autonomous sailing, turn on itself 
twice, then head for home executing a tack approximately halfway through, 
completing its approach 3 meters from the target. 

Shortly after returning to autonomous control in the final run, a gust of 
wind blew away ELAINE's wind sensor; despite having never been thoroughly 
tested, the error correction routine within the sensor parser kicked in, discarding 
any further input from the wind sensor and estimating wind direction from the last 
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valid data and the boat's current bearing. Despite tightening its sails a little too 
much, ELAINE headed home slowly but surely, completing its approach 1.5 
meters from the target. 

Comprehensive Test – April 25, 2007
The values derived from previous tests were coded into the AI application, 

rather than sent as commands; for this demonstration, ELAINE was given a 
waypoint, manually steered away from it for a short distance (3 meters), told to 
navigate away from it by modifying the tracking function and told to return to the 
starting point after having reached a distance of approximately 40 meters.

The test was generally successful; a minor problem came about due to the 
strong wind during the test, which tilted the boat considerably – although the 
failsafe functioned properly, the boat spent enough time at a wide angle from 
vertical that the bilge pump hose exhaust found itself underwater, becoming a 
siphon. Although ELAINE returned home under its own power and intelligence, 
the water inside got dangerously close to the electronics. Photographs were 
taken.
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VIII: Summary and Conclusion
The NAVCOM AI has proven its potential as a general-purpose navigation 

computer, and demonstrated actual commercial potential if used as a telemetry 
device (during both boat and plane tests, commercial availability was inquired 
about). While real-world navigation is much more complicated than what the 
current incarnation of this platform can handle, the ELAINE project demonstrated 
that automatic sailing does not require prohibitive processing resources.

Further revisions of the NAVCOM AI will include the ability for the 
NAVCOM AI to make an educated guess as to rudder fudge factors by observing 
the vehicle's behavior when in telemetry mode; a telemetry-only board is 
planned, as well as a surface mount version for smaller vehicles. In the longer 
term, the ability to read (and learn from) incoming servo pulses from the human 
pilot is planned.

Further revisions of the ELAINE project will include enhanced tacking 
ability based on crosstrack error and the possible replacement of the current 
board with a SMD version; ELAINE has proved to be too small for a development 
platform for future NAVCOM AI revisions, and will likely be donated to the 
University so that others may use it for their senior designs – particularly 
interesting would be the addition of solar panels once a smaller control board is 
engineered. The name ELAINE will be kept for further sailing-related 
developments in autonomous navigation.

Autonomous robotics is today in the state where personal computing was 
in the late 1970s: the field is wide open for exploration and opportunities are 
plentiful. It is entirely possible that efficient automation and renewable energy 
technologies, combined to produce a class of “electronic animals” built and 
trained to augment human capabilities, may eventually result in an economic 
paradigm shift comparable to the advent of the Internet.

Matteo K Borri
April 16, 2007
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Appendices

What follows is additional information that may be useful for AI application 
developers and original equipment manufacturers should they choose the 
NAVCOM AI in order to implement their own project; the author is going to be 
available through email for clarifications and updates. 

The development diary has been left in a more-or-less unedited state in 
order to better reflect the development process; a few ideas in it were not 
developed into the final product, mostly due to time constraint, and may be useful 
to developers who wish to extend the platform.
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Appendix A – Costs
Item Company Cost

Electronics
Parallax Propeller microcontroller Parallax Inc. 13.99
Picaxe-08M microcontrollers                          (x5) Revolution Education 15.00
Garmin eTrex portable GPS unit Wal-Mart 80.00
MEMSIC 2125 Accelerometer Parallax Inc.
Hitachi H55b hall sensor Parallax Inc.
Voltage regulators                                           (x5) JameCo 7.50
Glue logic (multiplexer, transistors etc.) Saint Mary's University Available

Electrical 
Standard mini servo for rudder HiTec 5.95
Large ¼ size servo for sails HiTec 34.95
1¼-inch DC electric motor                              (x2) Radio Shack 6.00
Wiring, battery holder, microswitch Saint Mary's University Available
NAVCOM AI Motherboard (milling/pressing) PCB Express 59.95
Passive components and connectors Saint Mary's University Available
3300mAh Ni-MH main battery Radio Shack Donated by manager

Mechanical 
Assorted LEGO plastic parts Toys R Us 11.95
Assorted wooden boards Lowe's 14.95
Waterproof sensor covers Walgreen's Free (old photo film covers)

Support Equipment
XBee-Pro Demonstration Kit MaxStream Inc. 29.99
XBee Demonstration Kit MaxStream Inc. 19.99
TRS-80 Model 100 laptop computer Found at a garage sale 5.00

NAVCOM AI Total:
250.24

Grand Total:
305.22

-------------------------------------------------------------------- ----------------------------------------- -------------------------------------------
Development time 10 months

Cookies eaten during development 86
Hours of sleep lost Too many

Boats sunk during development 0
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NOTE 1: This only includes the cost of components that are actually present in 
the final design. As with many prototyping projects, a number of components were 

damaged and required replacement, and some subsystems were designed and tested 
but removed from the final implementation.

NOTE 2: ELAINE's hull was self-built from plans over the span of five months and 
represents a “labor of love”, a factory-assembled complete R/C sailboat of comparable 
size costing anywhere between $500 and $1200 new.

NOTE 3: The “Company” column indicates the company that the component was 
purchased from, not the company that manufactures it; for all significant parts (thus 
excluding generic parts such as passive components) datasheets are available.
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APPENDIX B – Development Diary

Summer Progress:

- January through April - The “naval engineering” part is taken care of 
through the construction of a 1-meter remote controlled sailboat. Additionally, a 
suitable electric RC car is found and adapted.

- May - Experiments with interfacing a GPS to a PicAxe microcontroller 
start. While the PicAxe can handle waypoint and basic navigation, it proves to be 
too slow for the task. PicAxes are redeployed in a secondary role, to provide an 
unified NMEA-like interface between the sensors and the main processor. 

-After much research and trial and error, a microprocessor was decided 
upon- the Parallax Propeller.  After the HCS12 was ruled out because of the 
difficulty to interface and inability to find a C compiler, Chrissy explored simpler 
micros like the Basic Stamp 2, CB220, and Basic-X 24.  These were too slow 
and too small to handle our needs and could do no higher level math.  So we 
decided that a Picaxe 28 with a math co-processor would work; preliminary tests 
showed it could deal with the boat, but couldn't give sufficient precision such as 
the plane would require..  Then I discovered the Propeller.  This could do the 
higher level math, so there was no need for a co-processor.  Also, it is much 
faster that the PicAxe.

- June - Tests using the car as a platform. Basic navigation principles hold 
and a decent accuracy is obtained via interpolation.

- July - The Propeller language (SPIN) was learned, and a 
navigation-oriented math library written for the microcontroller

- August - First sailing tests, first with the Picaxe and FPU then with 
the Propeller. The latter proves to be notably superior.
-
- A prototype motherboard for the AI was designed and built. It handles 4 

sensors, 4 servos, a battery level detector, a radio switch and a radio modem. 
This was later expanded with a daughterboard socket and the ability to 
broadcast a TV signal.

-

Weekly Progress- Fall 2006:
(weeks dated by the Friday of each week)

September 1
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- Minor maintenance done on the hull (re-enameling of exposed wooden parts 
mostly).

- Replaced sail arm servo with a model that has less speed but much greater 
torque.

-  Updated math library for better precision (for speed, we use fixed-point 
arithmetic rather than floating-point).

September 8
- Was too busy trying to make rent to get much done. Started design on the 
final PCB layout.

September 15
- Did data recovery for Dr. Ibaroudene. 
- Continued work on PCB layout. 
- Came up with generalized formula for servo movements compared to 
sensor inputs -- it's too slow at the moment though.

servovalue1 = constant + eq1A.sv1 + eq1B.sv2 + eq1C.sv3 + eq1D.sv4 + 
eq1E.diff_ht + eq1F.diff_bh + eq1G.dist + eq1.prevvalue

where:

constant is the base value, for example, in case of a rudder the base value 
would be 150 (center).

eq is a third degree equation (this allows for using a cubic-spline 
interpolation), which I need to write a faster implementation for; the coefficients 
can be changed on the fly via the serial communication channel. If I learn enough 
about neural networks, I can
come up with a way to "learn" to adjust them -- I have 2 processors free, so 1 
could be doing this. Note that the coefficients can be stored as a sparse matrix, 
as most of them will be zero (e.g. in case of a sensor having nothing to do with a 
servo, for example
the sail servo should only deal with wind)

sv is a sensor value

diff_ht is a normalized (least circle arc) difference between heading and 
tracking

66



diff_bt is a normalized (least circle arc) difference between bearing and 
tracking

dist is the distance to the next waypoint

This should give me a solid software framework for training (either by supplying 
the coefficients after seeing how the AI does in a test run, or by having it detect 
under/overcompensation and change in consequence) the AI module, after which 
God willing the software side is done.

Hardware side, I must build a small VHF transmitter for the TV signal, 
make the sensors waterproof, and possibly have the AI board printed 
professionally.

October 6

Rebuilt sonar after water damage in test run; added anti-splash barier.

Currently rewriting math libraies to take advantage of the 2 unused 
processors.

Processor allocation is now:

0 - Initialization and main program
1 - Servo waveform driver
2 - Serial port driver
3 - TV signal driver
4 - GPS parser
5 - Sensor parser
6 - Math processor 1 (basic math)
7 - Math processor 2 (trig)

Currently helping Chrissy out with programming in Spin.

Decided that an extra compass sensor is needed to check against while
performing sharp turns; sensor has been ordered. Investigated accelerometer
for this purpose, but a compass sensor is a more realistic bet.

October 13 - 20 - 27
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Designed, ordered, received and populated the new mainboard -- thanks 
to Chrissy for the help with the voltage regulators. Testing of said board 
continues. Layout and schematic are on file (Multisim-Ultiboard 9 used, board 
fabricated by ExpressPCB). This took quite a long time.

Built control terminal out of a radio transceiver and a TRS-80 laptop 
(vintage 1983) -- better than modern laptop in that batteries last longer and 
display is easier to read outdoors, and we only need textmode anyway. It looks 
rather cool.

Rewrote math library AGAIN for what I hope is the last time -- the 2 spare 
processors are allocated dynamically as coprocessors, first-come-first-serve. 
This is acceptable because doing things this way is still 2x-15x faster than having 
each processor do its own math, especially with trig.

Built and tested compass sensor module; still need to decide where to 
mount it on the boat. Begun to write parser for the compass.

Moved all sensor xmit speed from 4600 to 9600 baud, since they can 
handle it with no errors. Now every serial comm in the AI module is at 9600.

Decided to use temporary waypoints for the tacking AI, rather than 
overriding the main
waypoint-track function -- this generates cleaner code.

Debugging "plug and play" sensor parser -- it still freezes the main 
processor on init if no sensors are connected. Interestingly, the dedicated 
processor goes along just fine. Not sure why.

Processor allocation is now:

0 - Initialization and main program
1 - Serial port driver
2 - Servo waveform driver
3 - TV signal driver
4 - Sensor parser
5 - GPS parser
6 - Math processor 1 (dynamic)
7 - Math processor 2 (dynamic)

November 2
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Tested new math library for precision and speed, and made sure that a function 
cannot just take all the FPU time -- simple round-robin based on the common 
internal clock. Started adding the new math code to the actual program -- I'm 
about half there. Wrote simple fixed point arithmetic display routine for TV 
telemetry. Figured out how to save some memory with my strings.

Found & ordered decent-looking servo plugs and cables so I can make 
them the right length, found & ordered parts for TV amplifier, reduced instances 
of dropped serial characters on COM port via adjusting the transmit buffer. 
Checked operation of "reflex" systems, i.e. motor and bilge pump -- bilge pump 
may need rewiring. Cleaned up wiring in general.

Tested battery endurance ( ~ 8.5 hours with no servos, wow! ).

Still waiting for letter for Stanford :(((

Processor allocation hasn't changed.

November 3

(This was all done on Friday -- the memory management change is 
signficant, so it needs
to be documented by itself)

Changed memory management in order to simplify it -- specific data now 
reside at fixed addresses which are accessible by all CPUs. A lock will be added 
to make sure there are no overwrites in case of multiple sensors of the same 
type. 

The AI will constantly operate in tracking-matching mode, with the tracking 
vector being either derived from current and waypont position, or overridden 
either manually or by the sailing AI in case of adverse wind or obstacles. The 
override value can be a function of the calculated value, e.g. for use in a zig-zag 
maneuver or to go around a moving obstacle (in case of the model, ducks or 
swans). This generates a "steer by" value which will be used to drive a rudder 
servo.

Writing math libraries is less scary than I thought it would be.

Processor allocation hasn't changed and should now be considered 
stable, since it works.
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November 4

Shaved a few microseconds off trigonometry execution.
Trig functions now understand degrees natively (i.e. don't have to go back and 
forth with radians)
Started adding 3D support.

Redesigning bilge pump assembly -- the one I have is too big. What to do 
about it?

November 11

New bilge pump seems to have problems, so I built a third one -- this one 
is held in place with velcro and is less of a snug fit. Now using a 74HC14 for 
triggering the FET which drives the motor. Bilge pump is now independent of the 
AI.

November 18

Considering writing a simple BASIC-like language for control of the AI 
instead of having AI functions. Read up on PicoBASIC and tried to write an 
interpreter for the Propeller with little success.

December 4

Delivered presentation with reasonable success. Still working on 
documentation (wrote the first draft of the AI command list).

Weekly Progress - Spring 2007:
(tasks written the day they got finished)

January 19

Discovered that over break the sail servo had a seizure and rebuilt it -- will 
still order a new servo and keep the rebuilt one as a spare. 

January 22
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Partial rewrite of the GPS parser after car tests determined that sudden 
accelration threw the timing out of whack due to the GPS not responding when it 
should have. Now using full duplex serial for both GPS and xbee.

January 30

Added speed settings to math library (lock/unlock and forceslow/allowfast). 
Performing a lock during interpolation allows up to 80 interpolations per second! 
Clamped at 75 with TV off and 60 with TV off to be safe.

February 1

At the request of the airplane team, began work on a telemetry console 
that could display data graphically in case the TV output is unusable. This will be 
a windows application written in visual C or visual basic. 

February 10

Made a subtle modification to the plane's AI function that would have 
caused a major bug if the plane is being piloted by hand and not exactly aligned 
with the target (target drop zone is now a line rather than a circle). Hopefully 
Chrissy won't notice because I don't want to tell her that her logic was wrong.

February 12-15

Major software rewrite -- the memory map is now allocated entirely 
statically. While this is ugly from a software engineering standpoint, it's also 
faster and takes up less memory. Wrote "execute command" routine to allow 
premade commands.

February 12

First version of the console seems to communicate OK with the AI, but it 
loses data packets on occasion. Visual basic was used, which may be part of the 
problem -- it's too high-level and I cannot communicate with the serial port the 
way I want to.

February 20

Finished the console -- I had to basically write my own serial port buffer 
driver, but now it works properly and displays information as it should. Added 
embryonal moving-map support (piggybacking on
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google maps). Steve Cerwin showed me a HSI instrument and asked me to copy 
the look of it. I was asked to add "virtual lights" by Chrissy.

February 22

Moved a large number of commands to the ExecuteCommand format, 
which has been streamlined. Considering writing my own scripting language for 
the NAVCOM AI instead of using expressions. Quick AI test.

February 26

Released what I hope is the final version of the console, it can also 
generate GPGGA strings for use by external moving map software, if coupled 
with a virtual serial port pair. Steve is happy with the design of it, and it works 
very well for the boat too (turn off altitude and turn on wind speed). Virtual lights 
added and functional -- now I can go back to real work. TV output is now off by 
default as it seems that the console does the job just fine.

March 5

Ran first telemetry test with mixed result -- water comes into the boat and 
shorts
everything; bilge pump not effective. Sonars too exposed to water. Telemetry 
worked
until the NAVCOM AI got flooded -- no damage, fortunately. Wind sensor vane 
was totaled during transport. The boat is too small for this sort of work.

March 6

Added WC and WD command and revamped WS commands to allow 
entering waypoints manually, this should make life easier for both boat and 
plane. Came up with theoretically effective sail-position algorithm which will be 
tested during the next outing. Begun design on tacking algorithm. 

Decided against a scripting language. However, support was added to 
map any letter variable to any navigation parameter on the fly (or to nothing at all 
if so required). This can be used to quickly change fudge factors in formulas. 
Added support for running a finite state machine inside the main AI function since 
it will required for tacking.

March 9
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Rebuilt bilge pump assembly to my satisfaction -- I am no longer using a 
74HC14 for
water level detection, the FET is being driven directly with no adverse effects. 
Wind vane was rebuilt -- new vane is slightly less precise, but more accurate and 
a lot more robust for the same weight.

Rewrote the sensor parser almost completely to take advantage of being 
able to read serial pin voltages directly and using that to allow on-the-fly adding 
and removing of sensors; this should simplify things considerably if a sensor 
momentarily comes loose. Side effect: The system takes a lot less time to boot, 
from ~7 seconds to ~4 seconds depending on connections.

March 10 - March 19

Spent all week working on the IEEE website. Got very mad at Sebastian 
for not doing his job. If he goes home with IEEE webmaster on his official 
transcript for this semester and I don't, I will consider that as permission to prank 
someone over it for contempt of reality.

March 20

Spent a few weeks rigging up a proper servo controller for the car and ran 
a few tests;
telemetry works effectively, but controlling the car proved unrealistic due to 
uneven
steering response and the fact that the electric motor acting as its prime mover 
generates
enough of a magnetic field while running that the compass becomes hopelessly 
confused
even if mounted at the other end of the car. Good response from sonar sensors, 
however,
the car will be abandoned as there is no time for it and it's not giving me useful 
data
for the boat. Next time I'll get a RC car from somewhere other than Radio Shack 
and
costing more than $30.

March 23

Built guides inside the hull for the mainsail and jib lines, to avoid said lines 
getting tangled
in wiring. Removed front-mounted sonar. Waterproofed bilge pump electronics. 
Considering using smaller battery.
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Added "clamp" and "twirl" operations to the expression parser after 
noticing that they made the car slightly more controllable. Realized the possibility 
of setting variables through the AI function and  feeding that variable to the 
servos as an expression, which should allow for quick fudge-factoring. Added 
trim commands, for same reason.

March 27

Ran second telemetry test and first sail servo test, both with partial 
success. Standard
analog transmitter is of poor quality, however serial telemetry has excellent 
range. Sails
work as intended, which is a big relief.

Built waterproof enclosures for compass and front-mounted sonar (which 
now doubles
as a clinometer); this allows the compass to sit on deck farther away from any 
other
electronics, and thus get better magnetic exposure. Figured out how to put all the 
batteries inside, but a smaller battery would still be useful to have.

March 30

Built a small "demo box" for the AI to display at the research symposium; 
people were generally interested and one of the organizers gave me a $25 food 
coupon for some reason. Yay free food!
Posted spoof page on IEEE server which will be removed tomorrow.

April 3

Determined structure of tacking-algorithm state machine and devised 
formula to determine numbers of tacks for a given maximum crosstrack error 
between waypoints in such a way that the previous waypoint doesn't need to be 
memorized. Started coding for it after successful simulation within Vegastrike 
videogame engine; the logic is sound, all I need to do is make sure the rudder 
responds appropriately.

April 6

Paused development to help with the airplane project; plane test did not 
happen because
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of crosswinds. Hacked into a website's records to figure out a phone number for 
an alternate takeoff site, but it also was in the wrong orientation. Notified website 
owner of breach & of the fact that his phone number was not accessible 
normally, so could he please put it on the page. Was thanked for it.
 
April 11
Navigation test. Mechanics OK (bilge pump is a power hog, but it's on its own 
battery, and it works) , telemetry OK, basic navigation works in principle but is 
very inefficient – on occasion the boat will move in circles. Must refine compass 
interpolation and steering function. Tacking logic OK, but only tested while 
piloting manually. ELAINE seems to be attracted to a particular tree; in respect of 
this, may set my end waypoint there.

April 13
Plane test went OK, in the sense that my part in it worked perfectly and I have 
kept my obligations. Further refined the steering function and state machine.

April 15
Navigation test allowed me to refine my fudge factors to correct oversteering; 
after one unsuccessful run, the boat performed very well in two runs, returnig 
home without problems. During the second run, a gust of wind removed the wind 
vane from topmast; the NAVCOM AI correctly extrapolated an estimated wind 
direction from the last data received and its own position, and returned home.

April 16
A new wind vane was built and is currently being calibrated. Minor water damage 
found within the AI board was repaired; during last test, the centerboard was 
snagged and sustained some cosmetic damage at the root that will be repaired 
as time permits.
Finished writeup for the ELAINE project, pending subsequent tests.

April 18
Demo shown to Dr. Aminian; boat performed considerably well in simple two-
waypoint navigation. Video was not taken because there was little advance 
warning for this demo (originally scheduled on Apr 20, performed today due to 
unexpectedly good weather).

April 25
Similar demo shown to my family; boat performed solidly in stronger wind, and 
inclination sensor proved its usefulness in avoiding capsizing.
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APPENDIX C: NAVCOM AI TUTORIAL – SAMPLE USAGE

Upon startup, the AI will initialize itself and wait for a valid GPS fix from 
GPS #1. It's possible (and advisable) to activate the AI without any external 
components connected in order to try out a few commands. In this state, the AI is 
unable to start the main AI function, but can still execute commands – including 
the RPN calculator – and update servo positions.
A good place to start is to familiarize with Reverse Polish Notation: try out the 
calculator emulation function by entering commands such as
@? 2 2 +
@? 10 2 * 5 +
@? 10 2 / 5 + 2 ^
@? 9 $
@? -9 $
@? 9 - $
and examine the results. 

Now connect a servo to the servo output 1.
Enter the commands
@E1 1
@E1 0
@E1 -1
and note the servo's movement; experiment with fractions.
Most non-embedded GPS units, such as the Garmin eTrex, have a demo mode; 
turn the GPS on, and put it in demo mode. Notice that the AI acknowledges a 
valid satellite fix (it is unaware of the fact that it's simulated, and will accept the 
data as long as they are in the correct format).
A message stating that sat signal quality is OK should appear within the next 
second; the system is now fully functional. If you have a TV available, consider 
setting it to broadcast channel 3 and turning on the TV telemetry with the @TVB 
command – having the TV antenna near the motherboard should be sufficient for 
getting a readable signal. If you have a RCA composite cable, you can connect it 
to the TV and the AI board in the “composite out” pins and use the @TVC 
command instead; either way, a screen full of textual information should appear.

A quick way to establish a waypoint is to use the @! command; this saves 
the current position in the next available waypoint, then sets it as the current 
waypoint – this is a “man overboard” feature common in most nautical GPS 
systems. Enter that command, and wait some time to allow the GPS's demo 
mode to “walk away” from the waypoint – if you do not have a TV connected, you 
can use the @?  D command to get distance information; the ditstance should be 
steadily increasing. @? S  will return speed; if you have a TV connected, note 
how the information acquired his way matches that on the screen.
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Once the distance has increased to a high enough value, try some 
simulated maneuvering: if you are using the NAVCOM AI console, click once on 
the compass rose and use the Demo panel of your GPS to generate a simulate 
heading and speed – note that any compass or gyro sensors that are connected 
to the AI board will not be returning meaningful data, so there will be a 1sec. 
delay between entering a heading on the GPS and seeing it on the console.

Click on the Distance label to show the graphical distance readout, then 
enter the @TSS hbsdnIJ command to signify that you want telemetry to transmit 
heading, bearing, speed, distance, nav point number and the current coordinate 
pair; finally, enter @TSN 1 to limit telemetry to once per second (since simulated 
GPS is being used and other sensors are not active, this is the best precision 
available right now, and more frequent telemetry  would just repeat the same 
data). If you are using a standard terminal, note how all telemetry items save for 
coordinates are human-readable; the decimal point is implicit before the last digit.

Now enter the @! command and note how the nav point number and 
distance change with the next telemetry packet – distance is now very low but 
increasing, and a new nav point has been selected. This command can be 
entered quickly even from a standard terminal, and is designed to represent 
“man overboard” -- that is, mark the current position and endeavor to return to it, 
so as to mount a rescue attempt; this is a standard feature of most maritime GPS 
units, and incidentally provides a handy way of doing simple point-to-point 
navigation. Wait a little to allow the GPS to virtually move away from the saved 
coordinates, then using the telemetry information (whether in text or graphic 
form) try to navigate back to that point and watch the display react.

If you have a standard servo available, connect it to the Servo 4 output at 
the bottom right corner of the AI board, and enter the command @E4 U 180 / -- 
then resume navigating within the GPS's demo mode; note how the servo will 
“steer” depending on what the difference between the current and ideal bearing 
to the waypoint is! If you want to be sure of this, mark the same waypoint on the 
GPS and on the AI and compare the results.

A practical way to do so is to issue the @WD command and copy its 
output into a clipboard (if using the console, we recommend the Macro 8 text 
area); this generates a @WC command to assign a specified coordinate pair to 
the current waypoint. Set a GPS waypoint and enter @WD at the same time, 
then the resulting @WC command after your demo has gotten away from the 
waypoint; turn on telemetry ( @TSN1 or use the @TVC or @TVB to get a TV 
display for composite output and channel 3 respectively) and note how the AI 
and GPS recommend you steer – then watch the servo do just that.
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Now, enter the @ET  P  90  + command, and try to follow the AI's directions: it 
will try to drive a counterclockwise circle around the waypoint, keeping at the 
same distance. The tracking equation defaults to P, the straight-line bearing to 
waypoint; by having the AI try to keep its heading at a 90 degree angle, you have 
defined a circle with the current distance as a radius. If you would like to spiral 
towards a target, replace the 90 with a smaller number; if you would like to invert 
direction, use a negative number 90 degrees or less; if you want to spiral away, 
use a number (positive or negative) 90 to 180. If you want the AI to move AWAY 
from a waypoint, just set the tracking equation to @ET 0 P - -- this can be useful 
in application when some waypoints can be designed at hazardous locations. 
Feel free to experiment!
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Appendix D – Quick Nautical Terms Reference

Beam: The width of a ship.
Boom: A spar extending from a mast to hold the outstretched bottom of a sail.
Bow: The forward part of a ship.
Close Reach: A sailing mode in which the hull is moving at less than 90 degrees to the

direction wind comes from. In this mode, the sail acts as an airfoil.
Jib: A sail situated in front of a mast, generally triangular and fastened at the

two extremes of its leading edge.
Tacking:
Mast:  A long wooden or metal pole or spar, usually vertical, on the deck or keel

of a ship, that supports sails.
Centerboard: A metal or wooden slab housed in a casing or trunk along the centerline

of a sailboat.
Tacking: The maneuver by which a sailing boat or yacht turns its bow through 

the wind so that the wind changes from one side to the other.
Under power: Said of a sailboat that carries an auxiliary engine, when the engine is

being used for propulsion.
Under way: Said of any ship that is actively sailing under its own direction, as 

opposed to being docked or tugged by another ship.

More information can be found online at: 
http://sitesalive.com/ca9697/misc/glossary.htm
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Appendix E – Schematics
A full scale version of the NAVCOM AI schematics and production drawings, in 

various formats to ensure compatibility, is available at

http://67.15.245.144/portfolio/navcom_ai/schematics.zip

and may be used to manufacture copies of the device subsequent approval of 
the copyright holders.

Schematics will be provided in different formats (.net, Gerber, .pcb, .dxf etc.) 
upon request. The copyright of any improvement or modification for educational purpose 
reverts to Saint Mary's University. 

Low-resolution printouts of the schematic and working drawing follow, along with 
a short explanation where necessary.

The most current schematics set as of May 1st, 2007 is included in the CD that 
accompanies this report.
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a. NAVCOM AI Motherboard

The NAVCOM AI motherboard acts as a support platform for the Propeller CPU and 
radio modem, and generates appropriate voltages for the operation of sensors and 
servos. This schematic was generated with Multisim 9.
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This working drawing was generated and routed with Ultiboard 9; the physical 
dimensions of the device are exactly 2 by 5 inches, with a height of 1 inch at the tallest 
point.
It is possible to replace all components but the radio modem and voltage regulators with 
SMD equivalents; shielding of the CPU (by means of a grounded conductive shell, such 
as a layer of aluminum foil) is recommended in order to increase the radio modem's 
effective range. If an amplifier is used for the TV signal – either composite or broadcast 
-- a minimum distance of two feet must be kept between the amplifier and the GPS – in 
this case, it's strongly recommended that the motherboard be kept close to the amplifier.

b. Sensor modules

Sensor schematics vary; the three external sensors used in the ELAINE project 
have been hand-wired and use the following schematics. It is worth noting that the wind 
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vane and compass are electronically equivalent – both sensors use a Hall-effect device 
pair, with the wind sensor sporting a free-wheeling weather vane carrying a neodymium 
magnet; the compass sensor is placed at a sufficient distance from other electronics 
(and the wind sensor) to avoid magnetic interference.

Compass / wind vane sensor

The header marked “TO AI” connects via a servo wire to the NAVCOM AI motherboard; 
the header named PROG can be used with a serial cable to reprogram the Picaxe-08M 
without having to remove it from its protective casing.

Clinometer + obstacle detector

The clinometer is a variation of the above, with added capability to read a sonar 
range finder; this sensor is located on ELAINE's prow, and informs the NAVCOM AI of 
the hull's pitch, roll, and (indirectly) wind velocity measured by the roll axis inclination. 
The range finder is an optional component whose presence allows the Picaxe to send an 
extra value to the NAVCOM AI – obstacle detection will trigger evasive maneuvering. 
This sensor pairing was decided upon for reasons of weight and space; since the 
PICAXE could handle the extra sensor, there was no point in adding a second 
microcontroller.
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c. Independent systems

The auxiliary motor within ELAINE is triggered by the sail servo arm retracting 
completely and touching a pushbutton; while this arrangement may appear primitive, it 
allows for the motor (the single most power-consuming component in the entire vehicle) 
to be electrically insulated from everything else. An added benefit is that during manual 
operation ELAINE can be controlled with a simple, inexpensive two-channel transmitter.

The bilge pump uses a simple water level detector built from a LS1084 voltage 
regulator (the same regulator used on the motherboard); since the device is CMOS 
based, merely allowing a current path between two points on the pump that are close to 
its bottom is enough to start the motor. The choice of component was simply due to 
availability, given that some had to be bought for the motherboard anyway.
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Appendix F – Datasheets
The datasheets for every active component used in the ELAINE project are 

available at

http://67.15.245.144/portfolio/navcom_ai/datasheets.zip

and are copyrighted by the respective manufacturers. 

Worth noting is that the Picaxe-08M is a PIC12F683-I/P microcontroller loaded 
with proprietary bootstrap code and a pBASIC interpreter; since speed was not a 
concern for NMEA sensors, the modified microcontrollers were preferred to the originals 
for ease of development.

The most current datasheet set as of May 1st, 2007 is included in the CD that 
accompanies this report.
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Appendix G – Source Code
The complete source code for the NAVCOM AI, containing AI applications for the 

Plane Drop project and the ELAINE project, is available at

http://67.15.245.144/portfolio/navcom_ai/source.zip

and is to be distributed under the General Public License. For the purpose of 
modifications and additions pertaining to educational projects, Saint Mary's University is 

assumed to be the copyright holder. Feedback, bug reports and additions are 
appreciated and strongly encouraged.

Older versions will be made available at 
http://67.15.245.144/portfolio/navcom_ai/source_archive/

as time permits.

The author discourages generating a hard copy of the source code unless 
necessary for development purposes, on account of the Spin language using significant 

indentation which is hard to reproduce on paper.

Sample source code for various types of sensors is provided in the source code 
archive; all sensors described there use the Picaxe-08M microcontroller and have been 
tested for full compatibility with the NAVCOM AI.

The most current source code as of May 1st, 2007 is included in the CD that 
accompanies this report.
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